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Why this Paper?

이미지 이미지 이미지

• Paper about processing multi-modal(image-text) input.
• Also about making the base-model like Scheduler-GPT.

Introduction
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What is BERT?

• BERT stands for Bidirectional Encoder Representations from Transformers
• Pretrained on extensive datasets such as Wikipedia and BooksCorpus, BERT utilizes unlabeled data to 

develop a versatile base model.
• Only from task-specific fine-tuning, BERT reached peak performance levels on variety tasks.

Although, there has been

temporal aspect of data into consideration 

Introduction
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BERT's Pretraining Method

이미지 이미지 이미지

• BERT's pretraining encompasses two distinct phases with unlabeled data.
- Masked Language Model : randomly hides 15% of input tokens, prompting the model to infer the 
masked words within its training context.
- Next Sentence prediction : requires the model to ascertain if two sentences are sequentially 
connected.

Although, there has been

temporal aspect of data into consideration 

Introduction

4



ⓒSaebyeol Yu. Saebyeol’s PowerPoint

Creating a robust base model capable of 
processing multi-modal inputs that combine 

vision and language data effectively

Problem statement
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Application of a Co-attention mechanism
within the transformer layers,

which processes the keys and values of 
vision and text modalities interchangeably

Key Idea
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Related Works

이미지 이미지 이미지

Related Works
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The ViLBERTModel Architecture

이미지 이미지 이미지

• Expands upon BERT to concurrently represent visual and textual information.
• Comprises two parallel processing streams: visual and linguistic.
• Image : Utilizes cropped images defined by bounding boxes.

Image features are extracted using Faster R-CNN built on ResNet-101.
Each selected region i, vi is defined as the mean-pooled convolution feature.

• Text : Leverages the BERTBASE model for linguistic processing.

Although, there has been

temporal aspect of data into consideration 

Method
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The Co-attention Transformer Layer

이미지
이미지 이미지

• Exchanges key-value pairs of two stream(Image language)
• Enables vision-attended language features to be incorporated into visual representations,

and likewise for linguistic elements.

Although, there has been

temporal aspect of data into consideration 

Method
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Pretraining -Mask multi-modal learning

이미지 이미지 이미지

• During pretraining, 15% of the input from both images and language streams is masked, and the model 
learns to predict the masked portions.

• For text the pretraining method follows the conventional approach used by BERT.
• For image predicts the distribution over semantic classes for each corresponding image region.

Aims to minimize the KL divergence between the predicted and true distributions.
• Trains the model to infer textual context through visual cues and vice versa.

Although, there has been

temporal aspect of data into consideration 

Method
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Pretraining -Multi-modal alignment prediction

이미지 이미지 이미지

• Trains the model to predict whether text descriptions align accurately with the interpreted images.
• Engages in binary prediction training to determine if holistic representations, such as ℎ𝑣0and ℎ𝑤0

correspond with each other.
• Through this method, learns to discern the relational dynamics between each image and its associated 

text.

Although, there has been

temporal aspect of data into consideration 

Method
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Experiment  Settings  

Experiment

• The pretrained ViLBERT model was fine-tuned across four distinct tasks.
• 4 tasks are as follows:

- VQA : Answering questions based on a given image
- VCR : Answering questions with a commonsense explanation based on visual cues(Q→A, QA→R, Q→AR)
- Referring Expressions : Localizing an image region given a natural language reference.
- Caption-Based Image Retrieval : Searching for the most relevant image from a given pool based on

textual descriptions

이미지 이미지 이미지

Although, there has been

temporal aspect of data into consideration
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Baselines

Experiment

• Baselines
- Single-Stream : One stream architecture without dividing image and text
- Single-Stream+ : single-stream without pretraining
- ViLBERT+ : ViLBERT without pretraining 

• Task-Specific Baselines

13

Task Baselines

VQA DFAF

VCR R2C

Referring Expressions
(RefCOCO+)

MAttNet

Caption-based 
image retrieval

SCAN
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Comparison against other algorithms

• Compares the recent state-of-the-art (SOTA) with ViLBERT, leveraging transfer learning across four 
distinct tasks.

• ViLBERT demonstrates superior performance across all tasks evaluated.
• The results underscore the effectiveness of a robust base model trained on vision-text operations,

outperforming models specialized in individual tasks.

Results
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The Impact of [Co-TRM → TRM] Blocks on Performance

• The optimal number of [Co-TRM → TRM] blocks varies across different tasks.
• Increasing the number of layers does not necessarily correlate with better performance.
• A higher count of [Co-TRM → TRM] implies more extensive context aggregation, suggesting that tasks 

involving a greater computational fusion of text and vision features tend to benefit from additional 
blocks.

Results
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The Impact of Pretraining Dataset Size

• The dataset size was varied during the pretraining phase.
• An increase in the pretraining dataset size correlates with improved results post-finetuning.
• Implies that learning diverse relationships between images and text during pretraining positively 

impacts performance when transferring knowledge to different tasks.

Results
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Examples of Image Descriptions from Pretrained ViLBERT

• Some examples of image descriptions from a VilBERT without task-specific finetuing.
• Without task-specific fine-tuning, the model can already utilize its pretrained knowledge to generate 

descriptions that are relevant to the images.
• ViLBERT's advantage in pretraining lies in its ability to leverage both text and image modalities to 

enhance the understanding of content.

Results
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Conclusions

이미지 이미지 이미지

• Utilization of co-attention mechanisms allows it to excel by learning joint representations of visual and 
textual information, outperforming models that are narrowly focused on single-modality tasks.

• The incorporation of co-attention layers enables ViLBERT to effectively fuse and leverage multimodal 
features.

• Models trained on diverse datasets that encourage a broader contextual understanding show superior 
performance.

Conclusion
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Q & A
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