Value Function Transfer for Deep Multi-Agent Reinforcement Learning Based on N-Step Returns

Liu et al.

International Joint Conference on Artificial Intelligence(IJCAI) 2019

Speaker : Min Joon Kim Feb 28th, 2024

Introduction

- Transfer learning(TL)
 - (Definition) Transfer learning is a technique in machine learning in which knowledge learned from a task is re-used in order to boost performance on a related task.
 - TL in RL
 - (1) Learning from demonstrations (2) Policy Transfer (3) Representations transfer
 - (4) Inter-task Mapping (5) Reward shaping

"Transfer learning in deep reinforcement learning: A survey" 2023

Problem definition

- Value function transfer for deep multi-agent RL
 - Want to accelerate the multi-agent learning process with single agent knowledge.

Figure 1: Transfer single-agent knowledge to multi-agent system

Key ideas

- Propose the two knowledge transfer methods
 - Direct value function transfer
 - N-step Return(NSR) based value function transfer
 - Using NSR value representing the MDP similarity between single-agent and multi-agent environment
 - Experiments are conducted in grid world, multi-agent particle environment and Ms. Pac-Man game.
 - Sparse interaction environment (independent agents)

Year	Paper	Note
2010	Learning multi-agent state space representations	Knowledge transfer in
2011	Transfer learning for multi-agent coordination	multi-agent /
2015	Learning in multi-agent systems with sparse interactions by knowledge transfer and game abstraction.	<u>Tabular domain</u>
		MDP similarity
2018	Value-decomposition networks for cooperative multi-agent learning based on team reward.	VDN
2018	QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning.	QMIX

Previous works

- Can be adopted only in tabular domain
- Not much studies in value function transfer

Contribution

- Proposed value function transfer methods
- Suggest a new MDP similarity metric using N-step return value

Direct Value Function Transfer

- Direct Value Function Transfer Network Architecture
 - Model A : Single-agent expert policy
 - Model B : Multi-agent network(QMIX)

Figure 2: Direct Value Function Transfer Network Architecture. Model A represents single-agent expert policy network and model B represents multi-agent network.

Direct Value Function Transfer

Pseudo code

```
Algorithm 1: Direct Value Function Transfer
            Input: local value function q_i(s_i, a) for each agent i, discount
                                            factor \gamma, exploration factor \epsilon
   1 Initialization. Q(s, \vec{a}) \leftarrow \theta, \hat{Q}(s, \vec{a}) \leftarrow \theta', Q_i(s_i, \vec{a}) \leftarrow \theta_i;
  2 foreach episode do
                              Initialize state s;
   3
                              repeat
   4
                                                foreach agent i do
   5
                                                                  (s_i, a_i) \leftarrow the component of agent i in (s, \vec{a});
   6
                                                                 a_i \leftarrow \max q_i index with \epsilon-greedy policy;
   7
                                                                                                                                                                                                                                                                                    Store experience with Single-agents policy
                                                \vec{a} \leftarrow [a_1, ..., a_n];
   8
                                                store experience (s, \vec{a}, r, s', done, [q_1, ..., q_n]);
   9
                                                s \leftarrow s':
10
                                                Sample training experience from buffer;
11
                                                if not done then
12
                                                                 y = r + \gamma \hat{Q}_{max}(s, \vec{a}; \theta');
13
                                                 else
14
                                                    y = r; Q-value from single agent(expert) – Q-value for agent i
15
                                                L(\theta) = \alpha \sum_{i=1}^{N} (q_i(s_i, a_i) - Q_i(s_i, a_i; \theta_i))^2 + (1 - \theta_i)^2 + (1 - \theta_i
16
                                                     \alpha)(y - Q(s, \vec{a}; \theta))^2; (TD loss for the global Q value)
                                                Update \theta by a gradient method w.r.t. L(\theta);
17
                                                Every C steps reset \hat{Q} = Q;
18
                              until s = terminal;
19
```

Limitation of Direct Value Function Transfer

- Limitation and MDP similarity idea
 - What if the state is different between single-agent and multi-agent environment?
 - It causes negative transfer.

- So, they want to transfer only when the MDP is similar.
 - MDP similarity calculation : single agent Q value N-step reward(multi-agent)

N-step Return based Value Function Transfer

Pseudo code

Algorithm 2: NSR-based Value Function Transfer		
Input: local value function $q_i(s_i, a)$ and single-agent policy π for each agent <i>i</i> , N (N \geq 1), discount factor γ , exploration factor ϵ .		
Initialization NSP value function $\hat{\mathcal{D}}^N$ (
1 Initialization. NSK value function $\mathcal{K}_{\pi_i} \leftarrow \psi_i$, Keplay Buffer		
\mathcal{B}_i for each agent <i>i</i> ;		
2 foreach episode do		
3 Initialize state $s_t, t = 0;$		
4 repeat		
5 foreach agent i do		
6 $(s_{i,t}, a_i) \leftarrow$ the state of agent i in (s_t, \vec{a}) ;		
7 $a_i \leftarrow \max q_i$ index with probability δ ;		
8 $y_i = r_{t-N+1} + \gamma r_{t-N} + \dots + \gamma^{N-1} r_t;$		
9 Store $(s_{i,t-N+1}, y_i)$ in \mathcal{B}_i ;		
10 Update ψ_i by a gradient method w.r.t.		
$(y_i - \hat{\mathcal{R}}_{\pi_i}(s_{i,t-N+1};\psi))^2;$		
11 $t = t + 1$		
12 until $s_t = terminal;$		

 Update the N-step return prediction network (Multi-agent environment)

13 foreach episode do Initialize state s; 14 repeat 15 $(s_i, a_i) \leftarrow$ the state of agent *i* in (s, \vec{a}) ; 16 if $\max_i \left| \hat{\mathcal{R}}_{\pi_i}(s_i) - q_i(s_i, \pi_i(s_i)) \right| \leq \tau$ then 17 $a_i \leftarrow \operatorname{argmax} q_i(s_i, a_i)$ for each agent *i*; 18 else 19 $a_i \leftarrow \operatorname{argmax} Q_i(s, a_i)$ with ϵ greedy for each 20agent i; Learning by multi-agent method; 21 until s = terminal;22

- Similarity threshold τ
- Transfer (models are similar)
- No transfer (models are different)

Experiments

- Expertiment settings
 - Each single agent expert policy is trained by DQN.
 - 3 environments (Grid world, Multi-agent Particle, Ms. Pacman)
 - Similarity threshold $\tau = 2, 3, 5, 7$

Results

- Grid world
 - NSR-based transfer method showed more stable and faster convergence than others.
 - QMIX was slightly better than VDN algorithm.
 - About double steps are needed for the second environment(map2) learning.

Results

- Multi-agent Particle Environment(MPE)
 - NSR-based transfer method showed much faster convergence than others.
 - Proposed method converges in 90,000 steps, while the VDN needs 200,000 steps.
 - They found the appropriate threshold ($\tau = 5$) experimentally in figure (g), (h)

Results

- Ms. Pac-Man environment
 - Proposed method showed best performance, but there is not much improvement compared to the direct value function transfer method.

- Learned policy (Grid world, MPE environment)
 - Learned by single-agent(solid arrow), Learned by multi-agent(dotted arrow)

(b) **f** olicy Display

Conclusion

- They suggested value function transfer method for the Multi-agent RL.
- Proposed method showed faster and stable convergence than MARL algorithms.
- Achieved about 2 to 5 times faster convergence than existing models.

Limitations

- Only for sparse interactions (independent agents)
- Similarity calculation makes the additional burden in the training steps.