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Introduction

• Why Human Pose Estimation is Challenging?

But how about computer?

No Occlusion                           Occlusion

Use context by our experience
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Backgrounds

• VQ-VAE

- Vector Quantized Variational Autoencoder

- Consists of two parts : Encoder, Decoder, Codebook

- Encoder : Maps an input to a latent code

- Decoder : Maps the latent code to a reconstructed

image

- Codebook : Iteratively updated to best represent 

the original data

- Use sum of different losses : Reconstruction Loss

Commitment Loss



- Representing a pose by discrete tokens rather than heatmaps or coordinates

- Using vector quantizing technique similar with VQ-VAE

- Estimate 2D pose by considering the relationship between joints

• Key Idea
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Problem Statement & Key Idea

• Problem Statement

- Estimating 2D human pose from a mono-view image or video



• Modeling joint dependency
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• Overall Structure
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Method

- Stage 1 : Learning Compositional Encoder, Codebook, Decoder

- Stage 2 : Classification task

- This idea employs the same vector quantizing technique and similar loss function from VQ-VAE



• Compositional Encoder
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Method

- Transform a pose into M token features
- Input : Raw Pose G(Consist of 2d coordinates of each joints)
- Output : Token features(Sub-structure of the pose)



• Stage 1
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Method

- Step 1. Transform a 2d pose into M token features 
- Step 2. Quantize each token using codebook by the nearest neighbor look-up
- Step 3. Transform M tokens into a 2d pose
- Encoder network, Codebook, Decoder network

→ Jointly learned by minimizing following loss function

How to quantize tokens? 

Reconstruction

Loss

Commitment

Loss

𝑮 : Ground-Truth pose
𝑮 : Output pose from Decoder

sg : stop gradient

𝒕𝒊 : token feature i

𝒄𝒒(𝒕𝒊) : quantized result of 𝒕𝒊

𝑮 𝑮

𝒕𝒊 𝒄𝒒(𝒕𝒊)



• Stage 1
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Method

Reconstruction

Loss Commitment

Loss

𝑮 : Ground-Truth pose
𝑮 : Output pose from Decoder

𝒕𝒊 : token feature i

𝒄𝒒(𝒕𝒊) : quantized result of 𝒕𝒊
sg : stop gradient

- L1 loss : Difference between GT and Predicted value
- L2 loss : The squared difference between GT and Predicted value 
- smooth L1 loss :

- stop gradient : Ensuring the codebook is not updated 
during training encoder



• Stage 2

- Classification Head :  Predict the categories of the M tokens
- Codebook and Decoder are fixed in this stage
- Minimizing following Loss function
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Method

256x256 MxV Mx1

Swin Transformer

Cross entropy

Loss

Difference between

Predicted and GT pose

𝑳 : Ground-Truth token classes                 

from encoder 
𝑳 : Output of classification head

𝑳

Compositional Encoder 𝑳𝑮

𝑮

Quantizing



• Experiment Details

- Used COCO, MPII(2d), H36M(3d) dataset

- Number of tokens : 34 

- Number of codebook entries : 1024
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Experiment



• Experimental Results

- Using Swin-Base performs better than heatmap-based methods(HRNet, HRFormer)

- Using Swin-Huge performs better and faster than ViTPose
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Results

* AP : Average Precision 
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Results

* PCKh@0.5 : Percentage of Correct Keypoints(threshold : 50% of head bone link 

• Experimental Results

- Precisions of lower body show large improvement

- Lower body has more occurrences of occlusion than Upper body
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Results

* MPJPE : Mean Per Joint Position Error

• Experimental Results

- Train the network for 3D poses

- Also shows good performance for 3D pose estimation



• Conclusion

- By using token, the model can incorporate the context of joints

- The model becomes robust to occlusion, by using relationship between joints

- The accuracy of lower body does not exceed 90% yet

15

Conclusion
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