E

<1
Tl

233 oA A

TH o131 EIgH Arey

rol

_L

AU A :DRLE 0|8¢t 2| B &Y EIE|E

Summary: FABS| 2tA|1 Xl FHEILS 0| 8510 BHE A|ZH Of| 5511 0| F |4%)0}= 2| ZE|S DONLE 0|5 & EF

oYy AUAKAA

Zt25t= Online learning / experience bufferd| =%l C[0|E{ 2

=

o

1) Al E2d|0| M2 &4l policy &5 - 2H4at A
Sh= Off policy
2) FAB 1} Lot statesE H St matrixO|A] local featureE £=38}7| 2|6 CNNAIE (DQN)

oAl A &gl et
Challenges

1) Online learningg| &HH

- Online learning0i|M &z Z2[0]| HIER{ 3t st5E|2| TN AMEd HE 2| ZE 2 eTE|= State2} Action Hi[0]E{7}
AIIEl
A%

- &[0 starting pointE MABHFM otg S8 52 = US

=2 T AL

fujru

2) Feature extraction
- L2 HElZ state ES10| It538H91?

3) AX| FABO|AMQ] & *OI 2lse

- 4| FABZt Al=2{[0| M 2tZ0]| X}O| —'—XH

- AN FABER0|A = uncertainty?t =2 action2 £ exploration® A<, 0|= disruptive impact
- 2t X0|2p9F He| 2915017 [[H—-—Oil *'Iil 2tEat 422251 = online RL 80| {23

rol
=
9
1
X
02t

>
L2t

1) Historical data& 0|&7%! offline learning £ fine tuning in online learning

- dHATRE Sl historical datas 0| 80'H O E2 d52 E¥E Y

- Expert demonstration2 Soll Y2 H|0|E £ X|=8h& 2 Pretrained model2 0| 23lA XI| HIEQAZ 0|8
- FAB 20| H3}5tHal T M2 3t Jts (0|Z transfer learning@ 22| M4t J1s)

2) CIE feature extractorO|&

- Transformer: State matrix2| ©|7} Ct27]| I 20]| position embeddingzt multi-head attention= Sdll si{&

3) Conservative exploration with human feedback
- W22 AR GESH| 221552HLE £ X| B2 actionS candidate0|A| XA (Actor)

[ILa
oot
[Ux
h--

Pretrained

L Offline policy Online

: , : : Self generated data
simulation learning Prior dat Learning
rior data

AFA: historical data AF&-7Fs (if
optimal, guarantee better A enve} 445 Z251H exploreZls
performance) EHH If Al Ego]dES &3 §H4, FAB AA S 3 S
@& envel 45 28 BV} *lgﬂlolﬁol At 2 §teg 31X] Z51H A} 7 %E
If AA| 2732 &3t ohs5, 12 exploration £7t
(a) online reinforcement leaming (b) off-policy reinforcement learning (c) offline reinforcement learning
rollout data {(s,a,,s!,7,)} rollout data {{s;, a;,s!,7)} {(z\ a;, '.)]:- S s
e ; — |
=) | @ ™ m- et
Tk+1 a update I learn
rollout(s) rollout(s) Tk+1 rollout(s) : I
L Tk+1 t Thk+1 data collected ONCE == w= == = = |

with any policy training phase

Decision Transformer
: Reinforcement Learning via SequenceModeling

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, Igor Mordatch

UC Berkeley ,Facebook AlResearch, GoogleBrain

Problem Statement

Deadly triad in RL

- function approximation: H|==gt Stated| CHS{A| neural network?t &%

- Bootstrapping: 22 352 &4 242 HQOIO|EY U CIE 7 A4S 0|8

- Off-policy: Dlvergence 7t5d0| =0t

| Key Idea

- Offline learning : Sequence modeling objectiveE AR50 $F 2l HA0]| s Transformer RS &
(bootstrapstX| 242, short-sighted decision 2X|)

- E|REE Z|CH2} 5h= WAl o 2 5HESH= 210] OfL|2l, 0%l past experience?t 0|2 W, desired rewardoi| 2}
712 action2 =E5IEE o

- causally masked Transformer Z2{|2 |3 AR50 X7 || EH O 2 trajectoriesE DT (7|&9 EBHARMH X
ALE)

Methodology

return state action

| Methodology

Trajectory representation

T = (R1,31._ ay, Ra,s2,a2,..., R]",HTT!’LT)

Algorithm 1 Decision Transformer Pseudocode (for continuous actions)

R, s, a, t: returns-to-go, states, actions, or timesteps
transformer: transformer with causal masking (GPT)
embed_s, embed_a, embed_R: linear embedding layers
embed_t: learned episode positional embedding

pred_a: linear action prediction layer

HHHHH

main model

def DecisionTransformer(R, s, a, t):
compute embeddings for tokens
pos_embedding = embed_t(t) # per-timestep (note: not per-token)
s_embedding embed_s(s) + pos_embedding

a_embedding = embed_a(a) + pos_embedding Linear Iayer for each modality
R_embedding embed_R(R) + pos_embedding

interleave tokens as (R_1, s_1, a_1, ..., R_K, s_K)
input_embeds = stack(R_embedding, s_embedding, a_embedding)

use transformer to get hidden states
hidden_states = transformer (input_embeds=input_embeds)

select hidden states for action prediction tokens
a_hidden = unstack(hidden_states).actions

predict action
return pred_a(a_hidden)

Methodology

Training
- K timesteps& HE&5I1 input token s, & E11 q,& O|F5I=5 st
cross entropy, continuous action2 mse lossE A&

O|l discrete action2

Evaluation

- Target return} environment starting stateg &t
AL return {A return- to - go A|2t 81 next state 718

- MME| action2 £|3t 5| target returnOi|A X|& &

target_return = 1
R, s, a, t, done = [1], False
while not done: 8

[térget;feiﬁrn]. fén?.resét()j, fj.

action = DecisionTransformer(R, s, a, t)[-1]
new_s, r, done, _ = env.step(action)

L= R + [R[-1] - 1)
= s + [new_s],

R
S, a; C =
R: 8 a; 't = RE=E:2];

5 +.[a§tioh],Aiﬂ¥ [leh(jo o

Experiments

Atari Game

- The paper compared Decision transformer with standard T[j and[imitation learninglapproaches for offline
RL

Game DT (Ours) (CQL QR-DQN REM)\(BC)
Breakout 267.5+97.5 | 211.1 171 89 |[138.9+61.7
Qbert 154+114 | 104.2 00 00| 17.3+147
Pong 106.1+81 | 111.9 180 05 || 85.2+200
Seaquest 25+04 \ LT 0.4 I}.T/ \ 21+ 0.3)

Table 1: Gamer-normalized scores for the 1% DQN-replay Atari dataset. We report the mean
and variance across 3 seeds. Best mean scores are highlighted in bold. Decision Transformer (DT)
performs comparably to CQL on 3 out of 4 games, and outperforms other baselines in most games.

| Experiments

Open Gym

- Medium : 1 million time steps generated by a’medium”policy that achieves approximately one-third the score of an

expert policy

- Medium-Replay: Replay buffer of an agent trained to the performance of a medium policy
- Medium-Expert: Medium policy dataset + Expert dataset

Dataset Environment DT (Ours) CQL BEAR BRAC-v AWR BC

Medium-Expert HalfCheetah 86.8+1.3 62.4 53.4 419 527 599

Medium-Expert Hopper 1076 £1.8 111.0 96.3 08 271 79.6

Medium-Expert Walker 108.1 £ 0.2 98.7 40.1 816 538 36.6

Medium-Expert Reacher 89.1+1.3 30.6 - - 73.3

Medium HalfCheetah 42.6 + 0.1 444 41.7 46.3 374 43.1

Medium Hopper 676 +1.0 58.0 52.1 31.1 359 639

Medium Walker 740+14 79.2 59.1 81.1 174 773

Medium Reacher 51.2+ 34 26.0 - - - 489

Medium-Replay HalfCheetah 36.6 038 46.2 38.6 477 403 4.3

Medium-Replay Hopper 827+70 48.6 33.7 06 284 276

Medium-Replay Walker 66.6 + 3.0 26.7 19.2 0.9 155 36.9

Medium-Replay Reacher 18.0+24 19.0 - - - 5.4

Reac_h?r: a goal- Average (Without Reacher) 74.7 63.9 48.2 36.9 343 464
conditioned task Average (All Settings) 69.2 54.2 - - R A

AWAC: Accelerating Online Reinforcement Learning
with Offline Datasets

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, Sergey Levine

Department of Electrical Engineering and Computer Science, UC Berkely

Background

[0

Offline learning & Online learning2 S5l fine tuning

- Online learning processoi| 0| H0j| &%=l H|O|EE TN O 2 AFE -> starting pointE X|&

. . 1 . L . . .
1. Offline Learning = . Plslsi@) 2 Online Fine-tuning
- aff-palicy dat: \ b A : 1
- :1x|:];:| :l?‘l:n:; D= {[H.‘H". 5 r?'}_;l'} ;E‘ . - }

- prior runs of RL

Update] u “ (s,a,8,7) -
[/

Update
—
Ty Qs

| Problem Statement

Challenges in offline RL with online fine-tuning

1. Data Efficiency

- 0|7H0f| =& CllO|E{2t optimalO] Ot &= US
- On-policy fine tuningd|A{= prior data% MX| 26p7| I 20j| H| 2SN

1. Data Efficiency from Prior Data
7500

S000

2500

Average Return

OK S0K 100K 150K 200K
Timesteps
—— AWAC (Ours) —— DAPG [35]
- AWR [30]

| Problem Statement

2. Actor-critic methods do not take advantage of offline training

Bootstrap error in offline learning with actor critic methods
:Q(s,@)?t A(s,a) 2 GHIO|E Eii a2} 7| E HI0|E 20X Blole J2 gl

2. Actor-Critic Methods

7500 -

5000

2500

Average Return

0

OK 50K 100K 150K 200K
Timesteps

— AWAC (Ours) —— SACID (prior) [43]
—— SACID (pretrain) SAC (scratch) [11]

Problem Statement

3. Policy constraint methods

- Bootstrapplng errorE 27| 25l policy constraintE 0| 2¢ HL, offlinedf|A= & 2-55tLt fine

LS 11— &

- Policy constralnt. Optlmlzmg the policy to maximize the estimated Q function while restricting
the policy distribution to stay close to the data observed so far

Trt1 = argmax Egq(.s)[A™ (s, a)]
mell

s.t. Dy, (i (-[s]||m5(0]s)) < e.

Actor being updated Behavior model (from supervised learning)
Distribution from which all of the data seen so far

‘ 2L} Prior dataz2 at& (K| E8ks)ol B2 online et50]| AglsHX| Qo
conservative exploration -> Limited improvement

Key ldea

Advantaged Weighted Actor Critic

- Policy evaluation : Off-policy TD learning (for data efficiency)
- Policy improvement update to avoid conservative behavior and bootstrap error accumulation

: AWAC incorporates a KL constraint into the actor-critic framework implicitly
: Avoid modeling of the previous observed data with a parametric model

| Advantaged Weighted Actor Critic

- AWAC incorporates a KL constraint into the actor-critic framework implicitly

Trt1 = argmax Egq(.s)[A™*(s,a)]
mell

s.t. Dy ((-[s)||m5(0]s)) < e.

Il

L(m, A) = Eanr(.js)[A™ (8, a)] + A€ — Dxr(m(-[s)|[m5(:[s)))

K H#) iteration

The targets are obtained by reweighting the state-
action pairs observed in the current dataset by the
predicted advantages from the learned critic

1 I
m*(als) = Z0) mslals)exp (ZA“""{E._EI])

Il

1
Or+1 = argmax [E [lmg mg(als) exp (EAH (s, a))}

4 s.a~3

policy update by sampling directly from f

| Advantaged Weighted Actor Critic

Algorithm 1 Advantage Weighted Actor Critic (AWAC)

I: Dataset D = {(s,a,s’,r),}
2: Initialize buffer 5 =D

3: Initialize mg, Q¢

4: for iteration i = 1,2, ... do

5: Sample batch (s,a,s’,r) ~ 3

6: y=r(s,a)+ By a[Qy, (s 2)]

7 ¢ argming Ep((Qa(s,a) - 9)°

8: 0+« argmax, Ega.z3 [lag mg(als) exp (%Am" (s, a))}
9: if 7« > num_offline_steps then

10: T1,...,TKNPWG(TJ

11: ,S{—..SU‘[T]_.I,....JTK}

12: end if

13: end for

Deep Q-learning from Demonstrations

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J., Sendonaris A.,
Osband, I., Dulac-Arnold, G., Agapiou,J.

Google Deepmind

The Thirty-Second AAAI Conference on Artificial Intelligence (2017)

| Background

Imitation-based reinforcement learning

“Demonstrations do not have to be perfect; rather, they just need to be a good starting point”

Imitation
T Im
Text t4+13St+1 ay
« Environment
Store to imitation X
Agent
l. B ————{Exploration
Experience | ‘l‘_‘mnanon o
replay | buffer Text t+1; St+1 ay
Imitation Imitation with

with Experience Replay Exploration Strategy t_Environment |
(Sec. 3.5.1) (Sec. 3.5.2)

Background

Imitation in experience replay methods

- Combining samples from demonstrations with samples collected by an agent in a single experience
replay
- The transitions from demonstrations have a higher probability of being selected

| Background

Imitation with exploration strategy methods

The agent randomly explores from a state alongside a single demonstration run or can ask for help from the

demonstrator
— the effect of overcoming the initial burden of exploration through demonstrations

Problem Statement

It is difficult to apply RL algorithms in real world problems (autonomous vehicles, data centers etc.)
These algorithms learn good control policies only after many millions of steps

This situation is only acceptable if the simulator is perfectly accurate

-> The agent should have good online performance from the start of learning

Key ldea

1) Utilizing data of the system operating under a previous controller, Deep Q-learning from Demonstrations
(DQFD) pretrains solely on the demonstration data

2) After pretraining, the agent starts interacting with the domain and updates its network using a mix of
demonstration and self generated data

Methodology

1. Pretraining

Goal of the pretraining phase : to learn to imitate the demonstrator with a value function that satisfies the Bellman
equation

Update network by applying four losses : 1-step double Q learning loss, n-step double Q- learning loss, supervised large
margin classification loss, L2 regularization loss

J(Q) = Jpq(Q) + MJn(Q) + A2 JE(Q) + A3 Jr2(Q).

The role of supervised large margin classification loss

: Since the demonstration data is covering a narrow part of the state space, the network would update towards

the highest of these ungrounded variables
-> supervised large margin classification loss forces the value of other actions to lower than the value of the

demonstrator’s action

Je(Q) = mEaiL[Q(s: a) +l(ag,a)] — Q(s,ag) aE: Action demonstrated by experts

O if aE=a
Positive value, otherwise

Methodology

2. Online learning
- The agent never overwrites the demonstration data in replay buffer
- Prioritized experience replay: Relative sampling of demonstration versus self-generated data
The probability of sampling a particular transition i: P(i) = fp,%_ pi = |0;| + €
Bk
d;: the last TD error

calculated for this
transition i

| Methodology

Algorithm 1 Deep Q-learning from Demonstrations.

l:

Ll

—

=

13:
14
15:
16:
17:

TeYSsRNR

Inputs: DPle¥: initialized with demonstration data set,
6: weights for initial behavior network (random), €'
weights for target network (random), 7: frequency at
which to update target net, k: number of pre-training
gradient updates
forstepst € {1,2,...k} do
Sample a mini-batch of n transitions from D¢P!e¥
with prioritization
Calculate loss J(()) using target network
Perform a gradient descent step to update ¢
if f mod 7 = 0 then ¢’ < ¢ end if
end for
forstepst € {1,2,...} do
Sample action from behavior policy a ~ 7<%#
Play action a and observe (s’ r).
Store (s,a,r,s') into Drerlay - overwriting oldest
self-generated transition if over capacity
Sample a mini-batch of n transitions from D<Play
with prioritization
Calculate loss J(()) using target network
Perform a gradient descent step to update ¢
if f mod 7 = 0 then ¢’ < ¢ end if
s+ &
end for

Experiment

Comparison

1. Full DQfD algorithm (with human demonstrations)
2. PDD DQN (without any demonstration data)
3. Supervised imitation from demonstration data (without interaction, without TD learning)

| Experiment

Results

DQfD leverages the human demonstrations to achieve a higher score than any previously published result

130000 Hero
— DOfD
......... Imitation
100000 --- FDDDON
£
i BOOOO
E 60000
o
w
&
£
E 40000
[
=
20000

0 50 100

Training teration

150

=300

Pitrall

L]

L}

| = DQfD

§ o Imitation
| === FDD DQN

o 50

100
Training lteration

150

200

0000 Road Runner
— DQfD
......... Imitation
50000 --- PDDDON g Tt
g
i 40000
o
30000
=3
w
=]
£
= 20000
[
E
L
ol
o 50 100 150 200

Training lteration

Up-sample Ratio

T

=

"]

Demonstration Data Up-Sample Ratio

-" - 5
‘r..- hen® —— Montezuma's Revenge

=== Pltfall
----- 0-Bert
=== Road Runner

h

'3

L

TR — —"

LI B T T T PP P EE TP T

.:‘-\. - ks = meo

o 20 ab &0 4] 100

Training Iteration

How much more
demonstration data was
sampled than self-
generated data

Experiment

Results
- DQFD with some losses removed -> The agent starts with much lower performance

- Compared with other related algorithms, DQFD outperforms

Trainirng Episcde Returns

5000

4000

3000

2000

Loss Ablations: Montezuma Revenge

wE ".‘Irﬂnf-’u"\ 'l"'l.'-ul'l""i'
o ¥
o AN pren
e LT T it T
L i *
e
'
r
ittt
.-4
*.-' —_— DO
il === Mo Supervised Loss
=== Mo n-step TD loss
50 100 150 200

Training Iteration

I'raining Episode Returns

Loss Ablations: OQbert

253000

20000
15000
10000
S000 b
' — DOfD
;l\-: === Mo Supervised Loss
I === Mo n-step TD loss
D
o] 50 100 150 200

Training Iteration

Training Episode Returns

Related Work: Montezuma Revenge

5000
=== ADET
— DO
sopn
3000
X ™ .H.-"..Jl.-“-u-_-.. e e g
2000 papr™”
,-'-*f-* . P
1000 i
0 mrmm P e I P
o 50 100 150 200

Training lteration

Related Work: Obert

25000

20000
o 15000
&
o 10000
=
=
5000 & S
g — DO
i = Human Experience Replay
: - Replay Buffer Spiking
ot
[50 100 150 200

Training lteration

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34

