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Introduction

Adaptations in Reinforcement learning

* Issue: Most of early successes of RL focus on a fixed task in a fixed environment

-> In real applications we often have changing environments, and the optimal policy learned in a specific
domain may not be generalized to other domains while humans are usually good at transferring acquired

knowledge




Problem statement

The study aims to make quick adaptations
when faced with new environments

Dealing with changes across domains with a few samples from the target domain




Literature Review

Two research lines in transfer RL

1) finding policies that are robust to environment variations
- maximizing a risk-sensitive objective over a distribution of environments

- extracting a set of invariant states

2) adapting policies from the source domain to the target domain as efficiently as possible

- use importance reweighting on samples
- start from the optimal source policy to initialize a learner in the target domain
- a model is pretrained on a source domain and the output layers are finetuned via backpropagation in the target domain

=» In a new environment not all parameters need to be updated, so we can force the model to only adapt a set of
context parameters

Limitation: Previous methods mostly focus on MDPs and model all changes as a black-box, which may be less efficient
for adaptation




Key Idea

AdaRL

Motivation: The distribution shifts are usually localized — they are often due to the changes of only a few
variables in the generative processes, so we can just adapt the distribution of a small portion of variables

AdalLR
* achieves low-cost, reliable, and interpretable transfer for partially observable Markov decision processes

* learns a parsimonious graphical representation that is able to characterize structural relationships
among different dimensions of states, change factors, the perception, the reward variable, and the
action variable




Key Idea
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Method

A Compact Representation of Environmental Shifts

S: underlying latent state ) if states s are directly observed, in which case the observation function of o is not needed
O: perceived signals at time t (e.g., images)
A: executed action

R: reward
C :binary vectors or scalars that represent structural relationships from one variable to the other

0 : low-dimensional change factors that have a constant value in each domain
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Method

Structural relationships and graphs
* The paper introduced graph structure over variables

Perceived signals o are generated from the underlying states s
The actions at directly influence the latent states st+1

Often the action variable at-1 does not influence every dimension of st
The reward rt may not be influenced by every dimension of st-1




Method

Structural relationships and graphs
Environment model G is encoded in the binary masks c

Compact domain-shared representationss;"*"
- The latent state components that have an edge to the reward in the next time-step ¢ =1

or have an edge to another state component in the next time-step ¢3* =

Compact domain-specific representations ;"
- The latent change factors that have an edge to the reward in the next time-step %" =1

or have an edge to a state component %7s _ 1
1.t




Method

Structural relationships and graphs
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Method

MiSS-VAE

MiSS-VAE estimates models from different domains simultaneously, by exploiting commonalities across domains
while at the same time preserving specific information for each domain
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1) Sequential VAE: handles the sequential data, with
the underlying latent states satisfying an MDP

2) Multi-model: handles models from different
domains at the same time learning the domain-
specific factors 6

3) Structure: exploits the structural information that
is explicitly encoded with the binary masks c




Method

Policy Transfer

Instead of learning the optimal policy in each domain separately, policies in different domains are optimized at the
same time exploiting both commonalities and differences across domain

¢ _TLTL i
at = T (St :gk )

- Obtaining optimal policy in the target domain by learning it * in the source domains, and estimating the value of
the change factor 8 and inferring latent states s from the target domain




Method

Algorithm 1 (AdaRL with Domains Shifts)

i Initialize action-value function (), target action-value function ', and replay buffer 5. data collection

2> Record multiple rollouts for each source domain k(k = 1, -- 1) and estimate the model in Eq.1. from n source domains
3. Identify the dimension indices of s**" and the values of 8]"'" according to the learned model. . .

+ for episode = 1, ..., M do - and model estimation

s:  for source domaink=1,...,ndo
6: Receive initial observations o, ;. and r; ;. for the k-th domain.
7: Infer the posterior g(s7*;™ |01 k.71 k, B‘mm) and sample initial inferred state S"{”’i"".
s end for
o. fortimestept=1,...,Tdo
10: for source domaink =1, ....ndo _
1: Select a; ;. randomly with probability €; otherwise a; j = arg max, Q{SI“;:”, a, 0;"").
12: Execute action a; j., and receive reward r; 1 ;. and observation o; 1 j in the kth domain. | . th ti | f N
13: Infer the posterior ¢(s]%' ' L [0<¢4+1,k: T<t+1,ks @<t ks 67" ) and sample CHI egrnlng €op Im_a policy 1T
14: Store transition (S]"\", a4 g, Te+1.kSp 1 4, @5 ) in reply buffer B. with deep Q-learning
15: end for )
16: Randomly sample a minibatch of N transitions (s}"/™. a; ;. 741,871 ;, 07"") from B.
17: Sety, ; = rit1,; + Amaxy Q'(s ;Ti” a', Hmm)
18: Update action-value function Q by mlmmlzmg the loss:
I — — h Z(Jij ;Tf;n:ai_j-; B;n:n)),!'
19: end for
. Update the target network Q": Q' = Q. -
21: end for

22 Record a few rollouts from the target domain.
2. Estimate the values of 9;;;‘:; for the target domain, with all other parameters fixed.




Experiments

Modified Cartpole

two change factors for the state dynamics 8% : varying gravity and varying mass of the cart

change factor for the observation 82 : Gaussian noise on the image

Oracle Mon-1 CAVIA PEARL AdaRL* AdaRL
Upper bound lower bound (Zintgraf et al., 2019) (Rakelly et al., 2019) Ours w/o masks Owurs
G 2486.1 1098.5 w 1603.0 1647.4 1940.5 2217.6
~ (£369.7) (£472.1) (£877.4) (£617.2) (£841.7) (£981.5)
G out 693.9 2046 » 2920 434.5 = 439.5 = 508.3
- (£100.6) (£39.8) (£125.8) (£102.4) (£157.8) (£138.2)
M in 267T8.2 Td8.H = 2139.7 17T84.10) 1946.2 » 2260.2
- (+£630.5) (£342.8) (£859.6) (4+845.3) (£496.5) (£682.8)
M out 1405.6 d71.0 = O972.6 » TO3.9w BTd.5 e 10017
—ou (+368.0) (£92.5) (£401.4) (4+394.2) (£290.8) (£273.3)
G_in 1984.2 d65.0 = 10125 = 1260.5 » 1157.4 » 1428.4
&M in | (+871.3) (£144.5) (£664.9) (£792.0) (£578.5) (£495.6)
G_out 939.4 d36.9e G45.2 e 044,32 e HOG.0 e 659.4
&M_out | (£270.5) (+£139.6) (£481.5) (£175.2) (£184.3) (£272.5)




Experiments

Modified Pong

change factors for the state dynamics 8% : rotate the images w degrees clockwise
change factors for the observation 82 : different image sizes, different image colors, and different noise levels
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Figure 2: Illustrations of the change factors on modified Pong game.

Oracle Non-t PNN PSM MTQ AdaRL# AdaRL
Upper bound  lower bound  (Rusu et al., 2016)  (Agarwal et al, 2021)  (Fakoor et al., 2020)  Ours wio masks Ours
0 in 18.65 6.15 e 0.70 e 11.61e 15.70 « 14.27 » 18.97
0 (£2.43)  (£2.43) (£2.00) (+3.85) (+3.26) (+1.03) (£2.00)
O ot 19.86 6.40 0.54e 10.82 o 10.82 12.67 » 1575
- (£1.09)  (£3.17) {+2.78) (+3.29) {+4.13) {+2.49) (+3.80)
Cin 19.35 5.53 e 14.44 » 19.02 16.97 e 18.52 8 19.14
- (£0.45)  (+2.08) {£2.37) (£1.17) {+2.02) {+1.41) (£1.05)
 out 10.78 5.26 1484 17.66 15.45 @ 17.02 10.03
- (£0.25)  (+3.45) {+1.98) (£2.46) {+3.30) {+1.83) (£0.97)
S in 18.32 6.01 e 11.80 » 12.65 13.68 @ 14.23 » 16.65
Sl 18y (£2.02) (£3.25) (£3.72) (43.49) (+3.19) (£1.72)
S our 19.01 6.60 o 09.07 e 845 e 11.458 12.80 e 17.52
- (£1.04)  (£3.11) {+4.58) (+4.51) {+2.46) (+2.62) (£2.35)
N in 18.48 5.51 e 12.73 e 11.30 12.67e 13.78 » 16.54
S0 (+1.25)  (+3.88) (+3.67) (+2.58) (+3.84) (£2.15) (+3.13)
N out 18.26 6.02 e 13.24 w 11.26 15.77 e 14.65 » 18.30
- (£1.11)  (+3.19) {£2.55) (£3.15) (+2.12) {+3.01) (£2.24)




Conclusion

Conclusions

* AdaRL learns a latent representation with domain-shared and domain-specific components across source
domains and uses it to learn an optimal policy parameterized by the domain-specific parameters

* As opposed to previous work, AdaRL can model changes in the state dynamics, observation function and reward
function in an unified manner, and exploit the factorization to improve the data efficiency and adapt faster with
fewer samples
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