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Background

Flexible Job-shop scheduling problem

J =4, Jyof njobsand M = {My, -, M,,}of m machines
Job Ji consists of a specific sequence of ni consecutive operations 0; = {0;, 0;3,*+, Ojn, } With
precedence constraints

- Dispatching rules used in solving FJSP can be divided into two basic categories: the job selection rules
and the machine selection rules

- FJSP objectives: to minimize scheduling objectives such as mean flow time, mean tardiness, and
maximum tardiness



Introduction

Multi-action space for FJSP

- Hierarchical multi-action space of FJSP involves with a job operation action space and machine action
space

: At each timestep, the RL agent selects an operation action from its eligible operation action space and

then chooses a machine action for the selected operation action from its compatible machine action space.
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Problem Statement

Problem Statement

Optimization goal of FJSP: to assign operations to compatible machines and determine a
sequence of operations on a machine for minimizing the makespan
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Literature review

Literature review

1) Solving FJSP via mathematical programming and heuristics

- Approximate methods such as swarm intelligence (Sl) and evolutionary algorithms (EA) are
employed to solve scheduling problems in recent years

- Doh, et al.(2013) suggested a heuristic approach that combines machine assignment rules and job
sequencing rules for solving FJSP with multiple process plans

- Zhang, Mei, & Zhang (2019) proposed genetic programming(GP_ for FJSP and dynamic flexible job
shop scheduling problem

2) Solving optimal problems via DRL

- Wang, et al.(2021) proposed a DRL approach for dynamic Job-shop scheduling in intelligent
manufacturing and showed their method outperforms heuristic rules and meta-heuristic
algorithms.

- Waschneck, et al. (2018) proposed cooperative agents based on Deep Q- Network (DQN) designed
for production scheduling



Key ldea

Key ldea

The paper proposed DRL architecture on FJSP on multi-action space

1) Multiple Markov decision processes (MMDP) to represent both job operation and machine
states

2) Multi pointer graph network (MPGN) to define the job operation action policy and the
machine action policy

3) multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job
operation action policy and a machine action policy



Methodology

Multiple Markov decision processes (MMDP)

Disjunctive graph for Flexible Job-shop Scheduling problem
G=(0, C,D). Here, 0={0ij| Vi,j} U{S,T}is a set of all operations (S, T : dummy nodes)

(a) Disjunctive graph for an FISP instance (b) Example of a feasible solution

Black arrows represent conjunctive arcs representing the precedence constraints
Colored lines represent disjunctive arcs representing eligible machine cliques



Methodology

Multiple Markov decision processes (MMDP)

State: local states of operations and machines

1) Local state of operation Oij
a disjunctive graph on the previous page

Nodes: Each node contains two features
@ the completion time of scheduled operation or the estimated completion time of unscheduled operation
2 binary variable representing whether the operation is scheduled or not

Arcs: the set of arcs which have been assigned directions till timestep t and the set of remaining
disjunction arcs

2) Local state of machine Mk
@ the completion time for machine Mk

@ the processing time of operation Oij on machine Mk if machine Mk is compatible or the average
processing time of other compatible machines otherwise



Methodology

Multiple Markov decision processes (MMDP)

Actions: The actions at timestep t are composed of job operation action and machine action

Transition: the directions of disjunctive arcs are updated based on the current job operation action
and machine action

Reward: the negative value of the makespan gap between two continuous timesteps t and t+1
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Methodology

Multi- pointer graph network (MPGN})

Two encoder-decoder components, which define the job operation action policy and the
machine action policy, respectively.
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Fig. 3. The MPGN architecture for the FJSP.

.................................



Methodology
Multi- pointer graph network (MPGN})
(1) Job operation encoder (Graph embedding)

- The complex graph state is embedded by exploiting a graph neural network (GNN)
- Each node is encoded via a L-layer Graph Isomorphism Network (GIN)

*GIN: GNN variant designed to maximize representational power of a GNN




Methodology

Multi- pointer graph network (MPGN})

(2) Machine encoder (node embedding)

- There is no graph structure in the machine’s state information
- Therefore, the paper adopted a full connected layer to encode the local state of machine



Methodology

Multi- pointer graph network (MPGN})

(3) Decoders (action selection)

- At each timestep t, the job decoder selects a job operation action and the machine

decoder selects a machine action

- Each decoder is based on MLP layers
- In decoding, each decoder computes a probability distribution over either the job operation

action space or the machine action space



Methodology

Multi-Proximal Policy Optimization (multi-PPO) algorithm

Multi-Proximal Policy Optimization (multi-PPO) algorithm

The proposed multi-PPO architecture

includes two actor networks (job operation

and machine encoder-decoders)

Each actor learns a stochastic policy to
select operation and machine action
respectively

Critic Network: State -Value Function
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Fig. 5. Multiple actor-critic architecture for a multi-action space scheduling problem.




Experiment

Computational experiment

Dataset for small and middle-scale experiments

Training set with 12,800 FJSP instances, validation set with 128 FJSP instances, and testing set with 128
FJSP instances

An example 3 x 3 FJSP instance.

Pijk Job 1 Job 2 Job 3

Oy 042 Oi3 0Oy, Oy O3 O34 O35 O3
Machine 1 — — 56.4 - 66.1 — — 69.5 37.8
Machine 2 45.3 22.5 — 35.8 — 65.4 — - —

Machine 3 — 0.8 — — 78.7 26.3 34.9 54.4 -




Experiment

Computational experiment

Experimental Results of small-sized experiments

Table 3
Results of all methods.on randomly generated instances.
Size MIP FIFO 4 SPT  MOPNR LWEKR + SPT MWKR 4 FIFO + EET  MOPNR + LWER + EET MWKR + EET Ours
SPT SPT EET
6x6 Obj. 227 .86 328.45 329.28 397.02 331.58 418.62 438.59 474.21 613.07 272.32
Gap 0.00% 44,15% 44.51% 74.24% 45.52% 83.72% 92.48% 108.11% 169.06% 19.51%
Time (5) 0.73 0.028 0.032 0.028 0.027 0.026 0.025 0.025 0.026 0.041
10 = Obj. 255.88 385.82 377.60 495.94 382.43 661.25 711.71 821.53 1173.02 320.45
10 Gap 0.00% 50.78% 47.57% 03.82% 49.46% 158.42% 178.14% 221.06% 358.43% 25.23%
Time (s) 2962 0.084 0.092 0.085 0.087 0.077 0.086 0.079 0.080 0.14
15 = Obj. 287.23 413.00 412.91 567.56 409.99 066.56 1046.48 1259.30 1957.39 347.99
15 Gap 0.00% 43.79% 43.76% 97.60% 42.74% 236.51% 264.34% 338.43% 581.47% 21.15%
Time (s) 3600 0.24 0.26 0.23 0.24 0.21 0.24 0.25 0.25 0.39
20 = Obj. 391.41 566.32 569.36 733.16 567.37 1063.45 1107.93 1210.85 1815.82 454.85
10 Gap 0.00% 44.,69% 45.46% 87.31% 44.96% 171.70% 183.06% 209.36% 363.92% 16.21%
Time (5) 3600 0.21 0.24 0.22 0.21 0.19 0.23 0.23 0.23 0.34
20 = Obj. 322.54 434.48 430.79 609.96 430.72 1262.36 1384.12 1709.83 2762.01 361.75
20 Gap 0.00% 34.71% 33.56% 89.11% 33.54% 291.38% 329.13% 430.11% 756.33% 12.16%
Time (s) 3600 0.42 0.46 0.45 0.44 0.38 0.41 0.42 0.44 1.08
30 = Obj. - 528.51 525.08 741.08 522.93 1633.91 1732.54 2087.02 3462.27 433.42
20 Gap 21.94% 21.15% 70.98% 20.65% 276.98% 299.74% 381.52% 698.83% 0.00%
Time (s) 0.78 0.86 0.83 0.83 0.69 0.78 0.81 0.82 1.97




Experiment

Computational experiment

Experimental Results of small-sized experiments
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(a) The Gantt chart of the best dispatching rule
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(b) The Gantt chart of our method
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Experiment

Computational experiment

Experimental Results of middle-sized experiments

Table 4
Results of all methods on randomly generated instances.
Size FIFO + MOPNR + LWEKR + MWER + FIFO + MOPNR + LWEKR + MWER + Ours (20 = Ours (30 =
SPT SPT SPT SPT EET EET EET EET 20) 20)
50 = 20 Obj. 716.07 716.10 1002.88 716.61 2567.54 2631.44 2889.44 4829.83 590.22 587.48
Gap 21.89% 21.89% 70.71% 21.98% 337.04% 347.92% 391.84% 722.13% 0.47% 0.00%
Time 1.34 1.48 1.39 1.41 1.10 1.32 1.35 1.36 4.12 412
(s)
100 = Obj. 1201.32 1199.82 1574.44 1199.10 5004.78 5041.13 5184.85 7840.83 1071.03 1054.70
20 Gap 13.90% 13.76% 49.280% 13.69% 374.52% 377.97% 221.06% 643.42% 1.55% 0.00%
Time 6.66 7.40 6.83 7.03 4.62 6.35 6.70 6.99 18.34 18.34

(s)
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