Review of A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem

Kun Leia, Peng Guoa,b, Wenchao Zhaoa, Yi Wangc, Linmao Qiana, Xiangyin Menga, Liansheng Tang

Expert Systems With Applications (2022)

경영과학연구실 김지원

Flexible Job-shop scheduling problem

```
J = \{J_1, \dots, J_n\} of n jobs and M = \{M_1, \dots, M_m\} of m machines
Job Ji consists of a specific sequence of ni consecutive operations O_i = \{O_{i1}, O_{i2}, \dots, O_{in_i}\} with precedence constraints
```

- Dispatching rules used in solving FJSP can be divided into two basic categories: the job selection rules
 and the machine selection rules
- FJSP objectives: to minimize scheduling objectives such as mean flow time, mean tardiness, and maximum tardiness

Multi-action space for FJSP

- Hierarchical multi-action space of FJSP involves with a job operation action space and machine action space
- : At each timestep, the RL agent selects an operation action from its eligible operation action space and then chooses a machine action for the selected operation action from its compatible machine action space.

Problem Statement

Optimization goal of FJSP: to assign operations to compatible machines and determine a sequence of operations on a machine for minimizing the makespan

Literature review

Literature review

- 1) Solving FJSP via mathematical programming and heuristics
- Approximate methods such as swarm intelligence (SI) and evolutionary algorithms (EA) are employed to solve scheduling problems in recent years
- Doh, et al.(2013) suggested a heuristic approach that combines machine assignment rules and job sequencing rules for solving FJSP with multiple process plans
- Zhang, Mei, & Zhang (2019) proposed genetic programming(GP_ for FJSP and dynamic flexible job shop scheduling problem
- 2) Solving optimal problems via DRL
- Wang, et al.(2021) proposed a DRL approach for dynamic Job-shop scheduling in intelligent manufacturing and showed their method outperforms heuristic rules and meta-heuristic algorithms.
- Waschneck, et al. (2018) proposed cooperative agents based on Deep Q- Network (DQN) designed for production scheduling

Key Idea

The paper proposed DRL architecture on FJSP on multi-action space

- Multiple Markov decision processes (MMDP) to represent both job operation and machine states
- Multi pointer graph network (MPGN) to define the job operation action policy and the machine action policy
- 3) multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job operation action policy and a machine action policy

Multiple Markov decision processes (MMDP)

Disjunctive graph for Flexible Job-shop Scheduling problem

G=(O, C,D). Here, $O=\{Oij| \forall i,j\} \cup \{S,T\}$ is a set of all operations (S,T:dummy nodes)

(a) Disjunctive graph for an FJSP instance

(b) Example of a feasible solution

Black arrows represent conjunctive arcs representing the precedence constraints Colored lines represent disjunctive arcs representing eligible machine cliques

Methodology

Multiple Markov decision processes (MMDP)

State: local states of operations and machines

1) Local state of operation Oij a disjunctive graph on the previous page

Nodes: Each node contains two features

- 1 the completion time of scheduled operation or the estimated completion time of unscheduled operation
- 2 binary variable representing whether the operation is scheduled or not

Arcs: the set of arcs which have been assigned directions till timestep t and the set of remaining disjunction arcs

- 2) Local state of machine Mk
- 1 the completion time for machine Mk
- ② the processing time of operation Oij on machine Mk if machine Mk is compatible or the average processing time of other compatible machines otherwise

Multiple Markov decision processes (MMDP)

Actions: The actions at timestep t are composed of job operation action and machine action

Transition: the directions of disjunctive arcs are updated based on the current job operation action and machine action

Reward: the negative value of the makespan gap between two continuous timesteps t and t+1

Multi- pointer graph network (MPGN)

Two encoder-decoder components, which define the job operation action policy and the machine action policy, respectively.

Fig. 3. The MPGN architecture for the FJSP.

Multi- pointer graph network (MPGN)

- (1) Job operation encoder (Graph embedding)
- The complex graph state is embedded by exploiting a graph neural network (GNN)
- Each node is encoded via a L-layer Graph Isomorphism Network (GIN)

*GIN: GNN variant designed to maximize representational power of a GNN

Methodology

Multi- pointer graph network (MPGN)

- (2) Machine encoder (node embedding)
- There is no graph structure in the machine's state information
- Therefore, the paper adopted a full connected layer to encode the local state of machine

Multi- pointer graph network (MPGN)

- (3) Decoders (action selection)
- At each timestep t, the job decoder selects a job operation action and the machine decoder selects a machine action
- Each decoder is based on MLP layers
- In decoding, each decoder computes a probability distribution over either the job operation action space or the machine action space

Multi-Proximal Policy Optimization (multi-PPO) algorithm

Multi-Proximal Policy Optimization (multi-PPO) algorithm

The proposed multi-PPO architecture includes two actor networks (job operation and machine encoder-decoders)

Each actor learns a stochastic policy to select operation and machine action respectively

Fig. 5. Multiple actor-critic architecture for a multi-action space scheduling problem.

Computational experiment

Dataset for small and middle-scale experiments

Training set with 12,800 FJSP instances, validation set with 128 FJSP instances, and testing set with 128 FJSP instances

An example 3×3 FJSP instance.

Pijk	Job 1			Job 2			Job 3			
	O_{11}	O_{12}	O_{13}	O_{21}	O_{22}	O_{23}	O_{31}	O_{32}	O_{33}	
Machine 1	_	_	56.4	_	66.1	_	_	69.5	37.8	
Machine 2	45.3	22.5	_	35.8	_	65.4	_	_	_	
Machine 3	_	9.8	-	-	78.7	26.3	34.9	54.4	_	

Computational experiment

Experimental Results of small-sized experiments

Table 3Results of all methods on randomly generated instances.

Size		MIP	FIFO + SPT	$\begin{array}{l} \text{MOPNR} \ + \\ \text{SPT} \end{array}$	LWKR + SPT	$\begin{array}{l} {\rm MWKR} \ + \\ {\rm SPT} \end{array}$	${\rm FIFO}+{\rm EET}$	$\begin{array}{l} \text{MOPNR} \ + \\ \text{EET} \end{array}$	LWKR + EET	MWKR+EET	Ours
6×6	Obj.	227.86	328.45	329.28	397.02	331.58	418.62	438.59	474.21	613.07	272.32
	Gap	0.00%	44.15%	44.51%	74.24%	45.52%	83.72%	92.48%	108.11%	169.06%	19.51%
	Time (s)	0.73	0.028	0.032	0.028	0.027	0.026	0.025	0.025	0.026	0.041
10×	Obj.	255.88	385.82	377.60	495.94	382.43	661.25	711.71	821.53	1173.02	320.45
10	Gap	0.00%	50.78%	47.57%	93.82%	49.46%	158.42%	178.14%	221.06%	358.43%	25.23%
	Time (s)	2962	0.084	0.092	0.085	0.087	0.077	0.086	0.079	0.080	0.14
$15 \times$	Obj.	287.23	413.00	412.91	567.56	409.99	966.56	1046.48	1259.30	1957.39	347.99
15	Gap	0.00%	43.79%	43.76%	97.60%	42.74%	236.51%	264.34%	338.43%	581.47%	21.15%
	Time (s)	3600	0.24	0.26	0.23	0.24	0.21	0.24	0.25	0.25	0.39
$20 \times$	Obj.	391.41	566.32	569.36	733.16	567.37	1063.45	1107.93	1210.85	1815.82	454.85
10	Gap	0.00%	44.69%	45.46%	87.31%	44.96%	171.70%	183.06%	209.36%	363.92%	16.21%
	Time (s)	3600	0.21	0.24	0.22	0.21	0.19	0.23	0.23	0.23	0.34
$20 \times$	Obj.	322.54	434.48	430.79	609.96	430.72	1262.36	1384.12	1709.83	2762.01	361.75
20	Gap	0.00%	34.71%	33.56%	89.11%	33.54%	291.38%	329.13%	430.11%	756.33%	12.16%
	Time (s)	3600	0.42	0.46	0.45	0.44	0.38	0.41	0.42	0.44	1.08
$30 \times$	Obj.	-	528.51	525.08	741.08	522.93	1633.91	1732.54	2087.02	3462.27	433.42
20	Gap		21.94%	21.15%	70.98%	20.65%	276.98%	299.74%	381.52%	698.83%	0.00%
	Time (s)		0.78	0.86	0.83	0.83	0.69	0.78	0.81	0.82	1.97

Computational experiment

Experimental Results of small-sized experiments

(a) The Gantt chart of the best dispatching rule

(b) The Gantt chart of our method

Computational experiment

Experimental Results of middle-sized experiments

Table 4Results of all methods on randomly generated instances.

Size		FIFO +	MOPNR +	LWKR +	MWKR +	FIFO +	MOPNR +	LWKR +	MWKR +	Ours (20 \times	Ours (30 \times
		SPT	SPT	SPT	SPT	EET	EET	EET	EET	20)	20)
50×20	Obj.	716.07	716.10	1002.88	716.61	2567.54	2631.44	2889.44	4829.83	590.22	587.48
	Gap	21.89%	21.89%	70.71%	21.98%	337.04%	347.92%	391.84%	722.13%	0.47%	0.00%
	Time	1.34	1.48	1.39	1.41	1.10	1.32	1.35	1.36	4.12	4.12
	(s)										
100 ×	Obj.	1201.32	1199.82	1574.44	1199.10	5004.78	5041.13	5184.85	7840.83	1071.03	1054.70
20	Gap	13.90%	13.76%	49.28%	13.69%	374.52%	377.97%	221.06%	643.42%	1.55%	0.00%
	Time	6.66	7.40	6.83	7.03	4.62	6.35	6.70	6.99	18.34	18.34
	(s)	0.00								-5.5	