Multi-Modality in Music: Predicting Emotion in Music from High-Level Audio Feature and Lyrics

Krols, Tibor, Yana Nikolova, and Ninell Oldenburg (University of Copenhagen). "Multi-Modality in Music: Predicting Emotion in Music from High-Level Audio Features and Lyrics." arXiv preprint arXiv:2302.13321 (2023)

경영과학연구실 이태헌 2023.03.15

Do you know what logo is this?

1. Background

F0 Estimator 비교

• DEAM Groundtruth 값과 PYIN, CREPE 알고리즘 F0 값 비교

2. Introduction

Why are high-level features necessary?

- 1. Music is one of the most complex forms of art created by humans
- 2. Music provides a highly subjective experience to people

- A single song is composed of thousands of low-level features, and each feature interacts with each other to create the unique characteristics of a song
- High-level features are typically obtained by combining and analyzing the characteristics of low-level features extracted from music data

Combination of low-level features (Frequency, pitch, Chord)

High-level features

1. Background

Spotify

 Spotify is one of the most popular music streaming services in the world, with over 70 million users worldwide

6

Valence-Arousal space

- Valence-Arousal space is a 2-dimensional coordinate system used to represent emotions
- Valence represents the degree of positive/negative emotion, while Arousal represents the degree of activity/calmness of the emotion
- They are measured on a scale of -1 to 1, depending on the degree

Spotify open API feature

• Used features and description taken from the Spotfiy documentation

Feature	Description		
Acousticness	A confidence measure from 0.0 to 1.0 of whether the track is acoustic		
Danceability	Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity		
Energy	Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity		
Instrumentalness	Predicts whether a track contains no vocals. "Ooh" and "aah" sounds are treated as instrumental in this context		
Key	The estimated overall key of the track. Integers map to pitches using standard Pitch Class notation		
Liveness	Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live		
Loudness	The overall loudness of a track in decibels (dB)		
Mode	Indicates the modality (major or minor) of a track		
Speechiness	Detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry)		
Tempo	The overall estimated tempo of a track in beats per minute (BPM)		
Valence	A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track		

2. Introduction

Why MER(Music Emotion Recognition) is difficult

Lack of clear benchmark data and measurement metrics for results

3. Related works

Related works

MER as Regression Task

- Yang, Yi-Hsuan, et al. "A regression approach to music emotion recognition." IEEE Transactions on audio, speech, and language processing 16.2 (2008): 448-457.
- Vatolkin, Igor, and Anil Nagathil. "Evaluation of audio feature groups for the prediction of arousal and valence in music." Applications in Statistical Computing: From Music Data Analysis to Industrial Quality Improvement (2019): 305-326.

Lyrics as Prediction Metric

- Han, Donghong, et al. "A survey of music emotion recognition." Frontiers of Computer Science 16.6 (2022): 166335
- Hu, Xiao, Kahyun Choi, and J. Stephen Downie. "A framework for evaluating multimodal music mood classification." Journal of the Association for Information Science and Technology 68.2 (2017): 273-285.

Higher-level features

- Panda, Renato, et al. "How Does the Spotify API Compare to the Music Emotion Recognition State-of-the-Art?."
 18th Sound and Music Computing Conference (SMC 2021)
- Vatolkin, Igor, and Anil Nagathil. "Evaluation of audio feature groups for the prediction of arousal and valence in music." Applications in Statistical Computing: From Music Data Analysis to Industrial Quality Improvement (2019)

4. Problem statement & Key idea

Problem statement & Key idea

Problem statement

This paper aims to address the problem of emotion recognition in music

Key idea

- 1. This paper uses a multi-modal approach
 - Audio feature: High-Level audio feature (Spotify open API)
 - Lyrics feature : To represent the lyrical information, they created three types of features (Sentiment information, TF-IDF features, ANEW features)
- 2. This paper combines tag values from DMDD, LastFM, ANEW, and Spotify data

^{*} DMDD: Deezer Mood Detection Dataset

^{*} ANEW: Affective Norms for English Words

Data

 The DMDD, ANEW, and Spotify data were combined and used, involving three stages of preprocessing

1. DMDD (Deezer Mood Detection Dataset)

- Which holds VA scores for 18,644 songs and is based on the Million Song Dataset as well as tags from LastFM that are related to mood (V,A range is 1-9)

E.g. Music – (V : 5, A : 3, sad, tired)

2. VA scores were obtained by applying an extended ANEW (Affective Norms for English Words) dataset

- The dataset is used for studying the relationship between words and emotions. It includes around 14000 English words with emotion weights ranging from 1 to 9
- Measuring three emotional dimensions of words: Valence, Arousal, and Dominance
- With 14,000 words and their respective VA scores to the tags from LastFM

E.g. Music – (sad = V:8, A: 3, tired = V:5, A:1)

3. High-level features for all available songs from the DMDD via the Spotify

- Spotify's valence annotation is derived differently from our ground-truth valence, avoiding circularity and is also used as a predictive feature for emotion in Panda et al.(2021)

Ground truth Valence ≠ **Sptofiy Valence**

Extracting Lyrics Features

• Represent the lyrical information, this paper create three types of features

1. Sentiment information

- Consisting of positive, negative, neutral and compound scores was obtained with VADER(Valence Aware Dictionary and sEntiment Reasoner) sentiment analysis

2. TF-IDF(Term Frequency-Inverse Document Frequency) features

- TF-IDF stands for "Term Frequency-Inverse Document Frequency," and it is a method of evaluating how important a specific word is within a document

$$TF = \left(\begin{array}{c} Number of times keyword \\ is found in document \\ \hline Number of words in \\ document \\ \end{array}\right) IDF = log \left(\begin{array}{c} Number of documents \\ Number of documents \\ containing the keyword \\ \end{array}\right)$$

3. ANEW features

- They generated two count vectors for each pre-processed lyric text and multiplied the counts by the respective VA scores

Model process

Audio data: Spotify API

Lyrics data: Genius.com (crawling)

Model

MLR, RFR, SVR, MLP

MLR (Multiple Linear Regression)

- A statistical technique for modeling the linear relationship between a dependent variable and one or more independent variables

RFR (Random Forest Regression)

- One of the machine learning techniques for regression analysis. RFR is an ensemble method based on decision trees, which learns multiple decision trees to predict results

SVR (Support Vector Regression)

- A machine learning technique for regression analysis. It is a derived algorithm from SVM. SVR performs regression analysis by mapping the data features to a higher-dimensional space and finding the optimal decision boundary (or hyperplane) for regression

MLP (Multi-Layer Perceptron)

- A type of artificial neural network that uses multiple hidden layers to learn complex nonlinear models

Feature selection

Feature selection

Recursive feature elimination (RFE)

- One of the feature selection techniques used in machine learning. It is a method of iteratively training a model and removing features in order to find the most useful features from a given dataset

Model Results

• R^2 test scores for all uni and multi-modal models based on selected feature subsets

1. all features_A

{Acousticness, Danceability, Energy, Instrumentalness, Key, Liveness, Loudness, Mode, Speechiness, Tempo, Valence}

2. selected_A

{Danceability, Energy, Instrumentalness, Valence, Mode}

3. all features_L

{ANEW scores, TF-IDF, 4 Vader sentiment scores}

4. selected_L

{TF-IDF, 4 Vader sentiment scores}

Mode	Model	Valence	Arousal
	MLR	0.170	0.193
Audio	RFR	0.171	0.204
Audio	SVR	0.165	0.203
	MLP	0.176	0.203
	MLR	0.139	0.029
Lyrics	RFR	0.121	0.027
Lyrics	SVR	0.042	-0.074
	MLP	0.117	0.020
	MLR	0.236	0.190
Multi-modal	RFR	0.224	0.207
Winti-inodai	SVR	0.208	0.154
	MLP	0.235	0.196

Feature Analysis

- p-values of coefficients in MLR
- Valence has 7 significant predictors
- Arousal has 6 significant predictors

Feature	Valence	Arousal
Constant	-1.6885*	-0.9836*
Danceability	0.6915*	-0.3266*
Energy	0.6378*	1.4254*
Loudness	-0.0091	-0.0073
Speechiness	-0.1101	0.3952*
Acousticness	0.1649*	0.0207
Instrumentalness	0.0929	-0.3278*
Liveness	0.1916*	0.0207
Valence	1.0901*	0.5158*
Tempo	0.0005	0.0004
Mode	0.0977*	0.1272*
Compound sentiment	0.2275*	-0.0051

coefficients for MLR. *significant with p < 0.05

Constant, Danceability, Energy, Valence, Mode

Selected Features Performance

Compares VA scores of the MLP with all features vs. selected features for each modality

1. all features_A

{Acousticness, Danceability, Energy, Instrumentalness, Key, Liveness, Loudness, Mode, Speechiness, Tempo, Valence}

2. selected_A

{Danceability, Energy, Instrumentalness, Valence, Mode}

3. all features L

{ANEW scores, TF-IDF, 4 Vader sentiment scores}

4. selected L

{TF-IDF, 4 Vader sentiment scores}

	Feature set	Valence	Arousal
Audio	all_features $_A$	0.163	0.193
	$selected_A$	0.176	0.203
Lyrics	$all_features_L$	0.091	0.009
	$\operatorname{selected}_L$	0.117	0.019
Multi	$all_features_A +$	0.230	0.193
	$all_features_L$		
	$selected_A$ +	0.235	0.196
	$\operatorname{selected}_L$		

Comparison of MLP \mathbb{R}^2 scores for different feature subsets

7. Conclusion

Conclusion & Future Directions

Conclusion

- Both uni-modal lyrics features an uni-modal audio features reasonably predict valence, although a multi-modal approach outperforms either modality individually
- Predicting arousal is hard to do with lyrics features, since audio features alone perform almost as well as the multi-modal approach

Future Directions

- Early Feature Fusion -> Late Feature Fusion
- Deep Learning as State-of-the Art
- Vague Annotation Standard

Q&A