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Although, there has been

temporal aspect of data into consideration

Q&A

• Wordembedding 결과물 2차원?
• PCA 2차원 차원축소

Q&A
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Although, there has been

temporal aspect of data into consideration

1. Background

Audio data (STFT & Spectrogram) 
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• Time domain represents audio features over time
• Frequency domain expresses characteristics in terms of various frequencies that make up audio
• STFT(Short time fourier transform) takes a Fourier transform at a certain time of the audio and lists 

them in time order
• The spectrogram can be obtained through the STFT transformation

Time domain & Frequency Domain Spectrogram

STFT

STFT (Time to Frequency)



Although, there has been

temporal aspect of data into consideration

1. Background

Word2vec
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• The lyrics are the words of the music
• Word2vec turns words into vectors
• In order to calculate the similarity between words, the similarity can be expressed by vectorizing a

low-dimensional vector into a multi-dimensional space
• Word2vec assumes that words appearing in similar positions have similar meanings

d1 is shorther than d2, man is similar to prince than princess

Word2vec example



Although, there has been

temporal aspect of data into consideration

1. Background

Word2vec

5

• The lyrics are the words of the music
• Word2vec turns words into vectors
• In order to calculate the similarity between words, the similarity can be expressed by vectorizing a

low-dimensional vector into a multi-dimensional space
• Word2vec assumes that words appearing in similar positions have similar meanings

d1 is shorther than d2, man is similar to prince than princess

Word2vec example



Although, there has been

temporal aspect of data into consideration

The challenge of MER(Music emotion recognition)

• Emotions are subjective to each person and change depending on the meaning situation.
• Many researchs have been attempted to solve the problem by taking a multi-modal approach

(Audio feature + a (Lyrics, Album image, Symbolic feature, biological data etc..))

2. Introduction
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MiREX (Music Information Retrieval Evaluation eXchange)

Results of MER task in MIREX



Although, there has been

temporal aspect of data into consideration

Application of MER(Music emotion recognition)

• MER can be widely used in many music fields
(Music recommendation, Music retrieval, Music visualization, automatic music composing, Psychotherapy)

2. Introduction
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Music recommendation Automatic music composing
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4. Problem statement & Key idea
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Problem statement & Key idea

Problem statement

This paper proposes a multimodal music emotion classification method. To solve the music 
classification problem with a multi-modal approach using audio & lyrics feature

Key idea

1. Pre-processing by separating human voice and background music from audio

2. Proposed 2D + CNN-LSTM, 1D + DNN model architecture
- Audio feature : 2D Spectrogram, 1D LLD (Low level descriptor, ex) MFCC, spectral feature 
- Lyrics feature : 2D Word embedding, 1D Word frequency vector

3. Audio & lyrics feature fusion with Stacking Ensemble structure



Audio, Lyrics classification input

5. Method
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• Audio Feature : Spectrogram(2D), LLD(1D) feature
• Lyrics Feature : Word embedding(2D), Word frequency vector(1D) 



Multi feature combined network classifier based on CNN-LSTM 

5. Method
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• Construct single-modal classifiers of audio and lyrics

Audio Feature : Spectrogram
Lyrics Feature : Word embedding

Audio Feature : LLD feature
Lyrics Feature : Word frequency 
vector

0



Multi feature combined network classifier based on CNN-LSTM 

5. Method
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• The CNN layer contains 2 convolutional layers and 2 pooling layers. the first layer of convolution 
input is an audio spectrogram or lyrics Word2vec

• CNN is used as Feature extractor

Audio Feature : Spectrogram
Lyrics Feature : Word embedding

Audio Feature : LLD feature
Lyrics Feature : Word frequency 
vector

0



Multi feature combined network classifier based on CNN-LSTM 

5. Method
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• The feature sequence output from the CNN layer can extract the features of each moment through 
the LSTM unit

• LSTM can effectively capture the context information of the input sequence and solve the problem 
of preservation and transmission of serialized information

Audio Feature : Spectrogram
Lyrics Feature : Word embedding

Audio Feature : LLD feature
Lyrics Feature : Word frequency 
vector

0



Multi feature combined network classifier based on CNN-LSTM 

5. Method
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Audio Feature : Spectrogram
Lyrics Feature : Word embedding

Audio Feature : LLD feature
Lyrics Feature : Word frequency 
vector

0

0

• 𝑟𝑖 = the number of output by the LSTM
• 𝑎𝑖 = attention weight value
• 𝑓(𝑟𝑖) = score function (Softmax)
• attn = weighted sum of the attention values of the entire sequence



Multi feature combined network classifier based on CNN-LSTM 

5. Method
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• Input 1D Feature (LLD feature, Word frequency vector)

Audio Feature : Spectrogram
Lyrics Feature : Word embedding

Audio Feature : LLD feature
Lyrics Feature : Word frequency 
vector

0



https://mymoneytree.tistory.com/81

Multimodal fusion 

5. Method
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• Multimodal fusion methods in existing research generally contains two types
• Feature level fusion
• Decision level fusion
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CV Stacking ensemble

5. Method
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• 5Fold cross-validation

1

2

2-2

2-1

3

4

5
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Stacking ensemble

5. Method
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• Using softmax as subclassifier



Dataset

6. Experiments
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• Last.fm tag subset of the million song dataset

• The emotional tags are angry, happy, relaxed and sad

• 500 songs are extracted from each emotional list, for a total of 2000

• They used script tools to download the song audio and lyrics files in accordance with the
tag lists and selected them manually

Audio dataset

Lyrics dataset



(a) 30 s original; (b) 15 s original; (c) 15 s pure
background; (d) 15 s pure human voice.

Audio waveform after preprocessing

6. Experiments
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• The audio samples are preprocessed at four levels to construct 4 experimental datasets, 
as shown in Figure

(a) 30 s original, (b) 15 s original, (c) 15 s pure background, (d) 15 s pure human voice

Audio waveform after preprocessing The accuracy of audio classification
in 4 preprocessing methods



Audio Experiment Result

7. Result
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• This group of experiments adopts different classification models to verify audio classification 
performance 

• The multi feature combined network classifier proposed in this paper has achieved the best 
classification effect

Accuracy of different audio classification models



Lyrics & Fusion method Experiment Result

7. Result
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• The table above is different classification models to verify lyrics classification performance
• The multi feature combined network classifier proposed in this paper has achieved the best classification effect
• The table below is different classification models to verify lyrics classification performance
• The multimodal ensemble method based on stacking proposed in this paper has obtained the best 

performance with an accuracy of 78%

Accuracy of different Lyrics classification models

Accuracy of different multimodal fusion methods



Comparative Experiment

7. Result
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• The classification models proposed by other researches in the field of music sentiment classification in recent 
years

• The multifeatured combined network classifier proposed in this paper has better classification effects
• However, It was lower than the accuracy of ‘The sentence-level decision fusion, 2017’ proposed by Su, Xue

Performance comparison of proposed model with existing models



8. Conclusion 

• The audio dataset was optimized through fine-grained human voice separation preprocessing, 
and a multi feature combined network classifier based on CNN-LSTM was proposed

• The classifier combines heterogenous 2D and 1D emotional features and has been effectively 
used in audio and lyrics classification, with a high classification accuracy

• Proposed a multimodal ensemble learning method based on stacking. Compared with single-
modal classification, it has outstanding classification effect and remarkable generalization 
ability

Conclusion

Conclusion
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