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Introduction

 ViT (Vision Transformer) showed good performance with almost only vanilla 

Transformer layers.

 On the JFT-300M dataset, ViT outperforms ConvNets.

 Large datasets are pre-trained, surpassing the performance of ConvNets.

 ConvNets show limitations in capturing global contexts, whereas ViT shows 

strength in this regard.

 Unlike traditional Transformer models, ConvNets capture local contexts more 

effectively.

 Transformers and ConvNets have distinct strengths and limitations when 

capturing global and local contexts respectively.
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Related works
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BELLO, Irwan, et al. Attention 
augmented convolutional networks. 

2019

Connecting convolution feature maps to 
perform relative self-attention 

operations

SRINIVAS, Aravind, et al. Bottleneck 
transformers for visual recognition. 2021

Replacing the last three blocks of 
ResNet with self-attention

VASWANI, Ashish, et al. Scaling local 
self-attention for parameter efficient 

visual backbones. 2021

Applying the filter operation 
characteristics of ConvNets to attention 

operations

LIU, Ze, et al. Swin transformer: 
Hierarchical vision transformer using 

shifted windows. 2021

Introducing window self-attention and 
shifted window self-attention to perform 

attention operations hierarchically, 
similar to CNN



Problem statements

 This paper investigates efficient integration to achieve a trade-off between 

convolution layers and attention layers.
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 The trade-off between generalization ability and model capacity.

 Effective fusion of local pattern recognition and global pattern recognition.

 Full integration of different layers.



Key idea

 The key idea is the combination of MBConv and Attention-FFN.
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 MBConv and Attention-FFN share structural similarity by using inverted 

bottlenecks.

 Both Depthwise Convolution and self-attention can be expressed as weighted 

average calculations on defined inputs.

 The trade-off between generalization ability and model capacity is determined 

through comparative experiments based on model configurations.



Overall architecture

 The Stem stage is responsible for transforming the input image into a lower-

dimensional feature map.

 Stage 1 and Stage 2 serve the purpose of reducing dimensionality and increasing 

channels through MBConv blocks.

 Stage 3 and Stage 4 perform relative attention (rel-attention) on feature maps, 

utilizing pooling and FFN to generate lower-dimensional feature maps.

 Resolution is reduced by half in all stages.
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MBConv block

 MBConv is an idea that originated from MobileNetV2 and is widely used in 

recent technologies like EfficientNet.

 Channel expansion in MBConv enables the learning of various features.

 MBConv streamlines the model through the use of pointwise convolutions and 

depthwise convolutions.

 To achieve efficient integration in CoAtNet, ConvNet uses MBConv blocks.
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MBConv block

 MBConv block은 Conv 1x1에서채널이확장되고 DConv 연산
후 Conv 1x1에서채널수를되돌림

Conv 1x1(pointwise conv): 1x1xC 필터를사용함
DConv 3x3(depthwise conv): 3x3x1가 C개있음

C: Input feature map’s channel



Rel-Attention block

 The Rel-Attention block performs relative attention operations on reduced lower-

dimensional feature maps.

 Attention allows the model to learn global information.

 Finally, the resolution is reduced and the channels are increased through a 

pooling layer.
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Rel-Attention block

 Rel-Attention performs rel-attention operations on each 
pixel vector of the feature map.

Rel-Attention: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉, 𝑅 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇+𝑄𝑅𝑇

𝑑𝑘
𝑉

FFN: It operates by increasing and then reducing the feature 
map by a factor of 4.



CoAtNet model family

 The authors propose a total of 5 CoAtNet model architectures.

 The models are categorized based on their depth and feasible input resolutions.
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Experiments

 Experiments focus on image classification
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 Experiments on model capacity and generalization ability

 Comprehensive Performance Evaluation on ImageNet-1k

 Experiments on Pre-training Performance

 Experiments on CoAtNet Configurations



Experiments on model capacity and generalization ability

 (a) is an experiment comparing performance on ImageNet-1k without pre-

training.

 In (a), ViT shows lower generalization performance.

 (b) is an experiment comparing performance on JFT-300M.

 C-C-T-T and C-T-T-T show good performance.
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Performance Evaluation on ImageNet-1k

 CoAtNet outperforms models with similar parameter counts.
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Experiments on pre-training performance

 CoAtNet achieves better performance with fewer parameters than ConvNets and 

ViT pre-trained on a large dataset (JFT).
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Experiments on CoAtNet configuration 

 In Table 6, CoAtNet with Rel-Attn shows approximately a 0.4% improvement in 

performance.

 In Table 7, the V0 layout exhibits the best performance.
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Conclusions

 CoAtNet explores the efficient combination of ConvNets and Transformers.

 CoAtNet is a model that combines the strong generalization ability of ConvNets 

with the excellent model capacity of Transformers.

 One limitation of the paper is that it only compares results on the image 

classification task.

 The authors plan to conduct further research on the various applications of 

CoAtNet across different tasks.
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