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Introduction

▪ ViT demonstrated the success of Transformer in the field of computer 

vision.

▪ ViT has a disadvantage of requiring pre-training on large-scale datasets 

to achieve good performance.
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Problem statement

▪ Development of Vision Transformer that can be used without pre-

training on large-scale data

▪ A study on applying knowledge distillation technique to Vision 

Transformer
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Key idea

▪ Application of knowledge distillation technique using ConvNet as a 

teacher network
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Knowledge Distillation

▪ Knowledge Distillation is a technique of training a smaller model using a 

well-trained larger model
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Soft/Hard Label

▪ Soft label is a result of smoothing the model's prediction results.

▪ Hard label is the ground truth.
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Model’s prediction

0.1 0.4 0.8 0.1

Soft label

0.24 0.25 0.27 0.24

Model’s prediction

0.1 0.4 0.8 0.1

label

0.19 0.24 0.38 0.19



Distillation Loss

▪ Both soft-labels from the Teacher network and hard labels, which are 

ground truth values, are used to compute the cross-entropy loss.
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Distillation using Convolutional Neural Networks

▪ ViT requires pre-training on large-scale data for good performance due 

to its limited generalization ability

▪ DeiT utilizes ConvNet as a teacher network to train the generalization 

ability of ConvNet.
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Proposed method

▪ The authors cover two axes of distillation.

▪ hard distillation versus soft distillation

▪ classical distillation versus the distillation token
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Soft distilation

▪ Soft distillation involves calculating cross-entropy loss with ground truth 

and KL-divergence loss with teacher model's temperature-scaled softmax

function values.
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Soft distillation loss function

▪ 𝜆: The coefficient balancing the Kullback–Leibler divergence loss (KL) 
and the cross-entropy (LCE) on ground truth labels y

▪ 𝑍: The logits
▪ 𝜓: softmax function
▪ 𝜏: temperature



Hard-label distilation

▪ Hard label distillation involves using the teacher model's predicted values 

as hard labels for training.
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Hard-label distillation loss function

▪ 𝑍: The logits
▪ 𝜓: softmax function
▪ 𝑦𝑡 = argmaxcZt(c): Hard-label of the teacher model’s prediction 



Distilation token

▪ Distillation token is a token added at the embedding layer before the 

transformer input.

▪ Distillation token is a token added at the embedding layer before the 

transformer input, which is compared to the output of the teacher model, 

similar to the CLS token in transformers.
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Model setup

▪ The DeiT model is experimented at the same number of layers as ViT-B 

and determines the model size by adjusting the embedding vector and 

attention head numbers.
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Variants of DeiT architecture



Experiments on Convnets teachers

▪ Convnet teachers perform better than transformer teacher models.

▪ Due to distillation, the inductive bias of convnets is transferred to DeiT.
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Comparison of distillation methods

▪ Comparison between Soft distillation and Hard-label distillation

▪ Comparison between traditional distillation and the proposed distillation 

method
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Agreement with the teacher

▪ Learning with the distillation token provides agreement between the 

DeiT and the teacher model
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Conclusion

▪ Convnet-based distillation training for Vision Transformer is proposed in 

this paper.

▪ By utilizing distillation with Convnet, the inductive bias of Convnet is 

learned, showing good performance without the need for large-scale 

pre-training of data.

▪ They propose a Vision Transformer model that can be used with limited 

resources.
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