Training data-efficient image transformers & distillation through attention

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles Proceedings of the 38th International Conference on Machine Learning, 2021.

경영과학연구실 김윤석

Introduction

- ViT demonstrated the success of Transformer in the field of computer vision.
- ViT has a disadvantage of requiring pre-training on large-scale datasets to achieve good performance.

		ViT-B/16	ViT-B/32	ViT-L/16	ViT-L/32	ViT-H/14
ImageNet	CIFAR-10	98.13	97.77	97.86	97.94	-
	CIFAR-100	87.13	86.31	86.35	87.07	-
	ImageNet	77.91	73.38	76.53	71.16	-
	ImageNet ReaL	83.57	79.56	82.19	77.83	-
	Oxford Flowers-102	89.49	85.43	89.66	86.36	-
	Oxford-IIIT-Pets	93.81	92.04	93.64	91.35	-
ImageNet-21k	CIFAR-10	98.95	98.79	99.16	99.13	99.27
	CIFAR-100	91.67	91.97	93.44	93.04	93.82
	ImageNet	83.97	81.28	85.15	80.99	85.13
	ImageNet ReaL	88.35	86.63	88.40	85.65	88.70
	Oxford Flowers-102	99.38	99.11	99.61	99.19	99.51
	Oxford-IIIT-Pets	94.43	93.02	94.73	93.09	94.82
JFT-300M	CIFAR-10	99.00	98.61	99.38	99.19	99.50
	CIFAR-100	91.87	90.49	94.04	92.52	94.55
	ImageNet	84.15	80.73	87.12	84.37	88.04
	ImageNet ReaL	88.85	86.27	89.99	88.28	90.33
	Oxford Flowers-102	99.56	99.27	99.56	99.45	99.68
	Oxford-IIIT-Pets	95.80	93.40	97.11	95.83	97.56

Problem statement

- Development of Vision Transformer that can be used without pretraining on large-scale data
- A study on applying knowledge distillation technique to Vision
 Transformer

Key idea

 Application of knowledge distillation technique using ConvNet as a teacher network

Knowledge Distillation

 Knowledge Distillation is a technique of training a smaller model using a well-trained larger model

Soft/Hard Label

- Soft label is a result of smoothing the model's prediction results.
- Hard label is the ground truth.

Distillation Loss

 Both soft-labels from the Teacher network and hard labels, which are ground truth values, are used to compute the cross-entropy loss.

Distillation using Convolutional Neural Networks

- ViT requires pre-training on large-scale data for good performance due to its limited generalization ability
- DeiT utilizes ConvNet as a teacher network to train the generalization ability of ConvNet.

Proposed method

- The authors cover two axes of distillation.
 - hard distillation versus soft distillation
 - classical distillation versus the distillation token

Soft distilation

 Soft distillation involves calculating cross-entropy loss with ground truth and KL-divergence loss with teacher model's temperature-scaled softmax function values.

Soft distillation loss function

$$\mathcal{L}_{\text{global}} = (1 - \lambda)\mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^{2} \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$$

- λ : The coefficient balancing the Kullback–Leibler divergence loss (KL) and the cross-entropy (LCE) on ground truth labels y
- Z: The logits
- ψ : softmax function
- τ: temperature

Hard-label distilation

 Hard label distillation involves using the teacher model's predicted values as hard labels for training.

Hard-label distillation loss function

$$\mathcal{L}_{\text{global}}^{\text{hardDistill}} = \frac{1}{2} \mathcal{L}_{\text{CE}}(\psi(Z_s), y) + \frac{1}{2} \mathcal{L}_{\text{CE}}(\psi(Z_s), y_t).$$

- Z: The logits
- ψ : softmax function
- $y_t = \operatorname{argmax}_c Z_t(c)$: Hard-label of the teacher model's prediction

Distilation token

- Distillation token is a token added at the embedding layer before the transformer input.
- Distillation token is a token added at the embedding layer before the transformer input, which is compared to the output of the teacher model, similar to the CLS token in transformers.

Model setup

The DeiT model is experimented at the same number of layers as ViT-B and determines the model size by adjusting the embedding vector and attention head numbers.

Variants of DeiT architecture

Model	ViT model	embedding dimension	#heads	#layers	#params	training resolution	throughput (im/sec)
DeiT-Ti	N/A	192	3	12	5M	224	2536
DeiT-S	N/A	384	6	12	22M	224	940
DeiT-B	ViT-B	768	12	12	86M	224	292

Experiments on Convnets teachers

- Convnet teachers perform better than transformer teacher models.
- Due to distillation, the inductive bias of convnets is transferred to DeiT.

Teacher Models	acc.	Student: I pretrain	DeiT-B 7 . ↑384
DeiT-B	81.8	81.9	83.1
RegNetY-4GF	80.0	82.7	83.6
RegNetY-8GF	81.7	82.7	83.8
RegNetY-12GF	82.4	83.1	84.1
RegNetY-16GF	82.9	83.1	84.2

Comparison of distillation methods

- Comparison between Soft distillation and Hard-label distillation
- Comparison between traditional distillation and the proposed distillation method

	Supervision		ImageNet top-1 (%)			
method ↓	label	teacher	Ti 224	S 224	B 224	B↑384
DeiT- no distillation	/	X	72.2	79.8	81.8	83.1
DeiT- usual distillation	X	soft	72.2	79.8	81.8	83.2
DeiT-hard distillation	×	hard	74.3	80.9	83.0	84.0
DeiT [*] a: class embedding	/	hard	73.9	80.9	83.0	84.2
DeiTૠ: distil. embedding	✓	hard	74.6	81.1	83.1	84.4
DeiT [*] a: class+distillation	✓	hard	74.5	81.2	83.4	84.5

Agreement with the teacher

 Learning with the distillation token provides agreement between the DeiT and the teacher model

	groundtruth	no distillation convnet DeiT		DeiT ^a student (of the coclass distillation D		e convnet) DeiT ૠ
groundtruth	0.000	0.171	0.182	0.170	0.169	0.166
convnet (RegNetY)	0.171	0.000	0.133	0.112	0.100	0.102
DeiT	0.182	0.133	0.000	0.109	0.110	0.107
DeiT?— class only	0.170	0.112	0.109	0.000	0.050	0.033
DeiT?— distil. only	0.169	0.100	0.110	0.050	0.000	0.019
DeiT?— class+distil.	0.166	0.102	0.107	0.033	0.019	0.000

Conclusion

- Convnet-based distillation training for Vision Transformer is proposed in this paper.
- By utilizing distillation with Convnet, the inductive bias of Convnet is learned, showing good performance without the need for large-scale pre-training of data.
- They propose a Vision Transformer model that can be used with limited resources.