A Simple Framework for Contrastive Learning of Visual Representation

Ting Chen, Simon Kornlith, Mohammad Norouzi, Geoffrey Hinton

Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020.

경영과학연구실 김윤석

Introduction

❖Flow of Image Classification Task

Framework of Contrastive Learning

Framework

- Loss function (Margin Triplet loss)
- y: class, x: image data, θ : neural network parameter, ϵ : margin

$$\mathcal{L}_{\text{cont}}(\mathbf{x}_i, \mathbf{x}_j, \theta) = 1[y_i = y_j] \|f_{\theta}(\mathbf{x}_i) - f_{\theta}(\mathbf{x}_j)\|_2^2 + 1[y_i \neq y_j] \max(0, \epsilon - \|f_{\theta}(\mathbf{x}_i) - f_{\theta}(\mathbf{x}_j)\|_2^2)$$

Problem statement & key idea

❖ Problem statement

 They want to simplify the recently proposed contrastive self-supervised learning algorithm without requiring special architectures or memory banks.

❖ Key idea

- Increase the batch size to do a lot of contrast training without memory banks
- Finding the best augmentation combination experimentally

Method

❖ Framework

- $g(\cdot)$: projection head (Multi Layer perceptron)
- $f(\cdot)$: Encoder head (Resnet)
- $t \sim T$, $t' \sim T$: Augmentation function

Larger Batch Size

Algorithm

Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \dots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ # representation $h_{2k-1} = f(\tilde{x}_{2k-1})$ $z_{2k-1} = q(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ # representation $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_i\|)$ # pairwise similarity end for **define** $\ell(i,j)$ **as** $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

 Do not use memory bank by increasing batch size

Loss function for positive pair:

$$\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$$

Experiment

- Comparison of results for different experiments
 - The authors demonstrate the advantages of SimCLR through an experimental method.
 - 1. Experiments on data augmentation
 - 2. Experiments on projection head configuration
 - 3. Experiments on batch size

Experiments on data augmentation

- Composition of data augmentation operations is crucial for learning good representations
 - Comparing the performance of different configurations for two phases of augmentation

Experiments on data augmentation

- Contrastive learning needs stronger data augmentation than supervised learning
 - Experiments show that unsupervised contrastive learning benefits from stronger (color) data augmentation than supervised learning

Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
Supervised	77.0	76.7	76.5	75.7	75.4	77.1

Top-1 accuracy of unsupervised contrastive learning and supervised learning using linear evaluation, under varied color distortion strength and other data transformations

Experiments on projection head configuration

- ❖ A nonlinear projection head improves the representation quality of the layer before it
 - Nonlinear projection is better than a linear projection (+3%), and much better than no projection (>10%)

representation h (before projection) is 2048-dimensional here.

Experiments on batch size

- Contrastive learning benefits (more) from larger batch sizes
 - shows the impact of batch size when models are trained for different numbers of epochs.

Supervised contrastive learning

- ❖ Issue of SimCLR
 - Images of the same class can also be composed of negative pairs

Problem statement & key idea

❖ Problem statement

 They want to train the same class images as positive pairs by using label information.

❖ Key idea

 propose a loss for supervised learning that builds on the contrastive self-supervised literature by leveraging label information

Supervised Contrastive Losses

❖ Notation

 $\{oldsymbol{x}_k, oldsymbol{y}_k\}_{k=1...N}$: Set of N randomly sampled sample/label pairs

 $\{ ilde{m{x}}_\ell, ilde{m{y}}_\ell\}_{\ell=1...2N}$: Set of two random augmentation of $\{m{x}_k, m{y}_k\}_{k=1...N}$

 $ilde{oldsymbol{x}}_{2k}$ and $ilde{oldsymbol{x}}_{2k-1}$ are two random augmentation of $oldsymbol{x}_k$

 $i \in I \equiv \{1...2N\}$: The index of an arbitrary augmented sample

j(i): The the index of the other augmented sample originating from the same source sample

$$A(i) \equiv I \setminus \{i\}$$

$$P(i) \equiv \{ p \in A(i) : \tilde{\boldsymbol{y}}_p = \tilde{\boldsymbol{y}}_i \}$$

$$\mathcal{L}_{out}^{sup} = \sum_{i \in I} \mathcal{L}_{out,i}^{sup} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_p / \tau\right)}{\sum_{a \in A(i)} \exp\left(\mathbf{z}_i \cdot \mathbf{z}_a / \tau\right)}$$

$$\mathcal{L}_{in}^{sup} = \sum_{i \in I} \mathcal{L}_{in,i}^{sup} = \sum_{i \in I} -\log \left\{ \frac{1}{|P(i)|} \sum_{p \in P(i)} \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_p / \tau\right)}{\sum\limits_{a \in A(i)} \exp\left(\mathbf{z}_i \cdot \mathbf{z}_a / \tau\right)} \right\}$$

Comparison of two loss functions

- They determine a better loss function through experimentation.
 - In the experiment, \mathcal{L}_{out}^{sup} shows better performance.

Loss	Top-1
\mathcal{L}_{in}^{sup} \mathcal{L}_{in}^{sup}	78.7% 67.4%

- lacktriangle Also, Jensen's inequality shows that \mathcal{L}^{sup}_{out} is the upper limit of \mathcal{L}^{sup}_{in} .
- > Jensen's inequality

$$f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2).$$

Performance Comparison

Comparison of multiple datasets

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers	Mean
SimCLR-50 [3] Xent-50 SupCon-50	88.20 87.38 87.23	96.50	85.90 84.93 84.27	75.90 74.70 75.15	63.15	0,5101		85.36	73.20 76.86 74.60	92.35			84.81 84.67 84.27
Xent-200 SupCon-200	89.36 88.62		86.49 87.28	76.50 76.26	64.36 60.46	90.01 91.78		86.27 85.18	76.76 74.26			97.20 96.97	85.77 85.67

Comparison to Imagenet

Dataset	SimCLR[3]	Cross-Entropy	Max-Margin [32]	SupCon
CIFAR10	93.6	95.0	92.4	96.0
CIFAR100	70.7	75.3	70.5	76.5
ImageNet	70.2	78.2	78.0	78.7

Conclusion

❖ The performance of contrastive learning was improved by increasing the batch size.

Through experiments, they proposed an effective augmentation combination for contrastive learning.

❖ The performance of contrastive learning was improved by using label information.