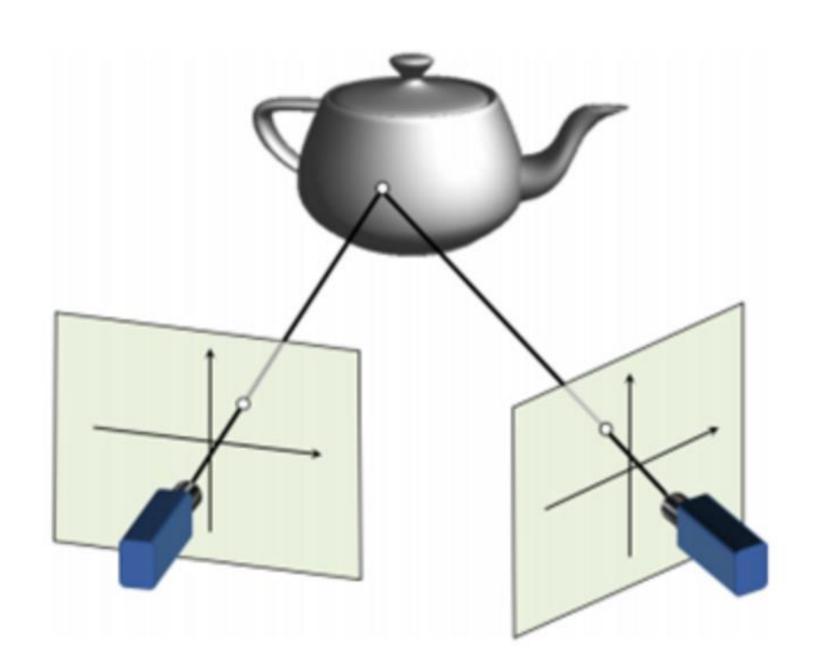
Learnable Triangulation of Human Pose

Karim Iskakov¹ Egor Burkov^{1,2} Victor Lempitsky^{1,2} Yury Malkov¹
Samsung Al Center, Moscow
² Skolkovo Institute of science and Technology, Moscow

2023. 8. 14.

경영과학연구실 전재현

Triangulation



- Technique used to estimate the position of a point in 3D space based on observations from two or more cameras
- The position of the 3D point is determined by finding the intersection of the lines formed by connecting the observed points from each camera
- Using camera parameters and corresponding points to determine the 3D position

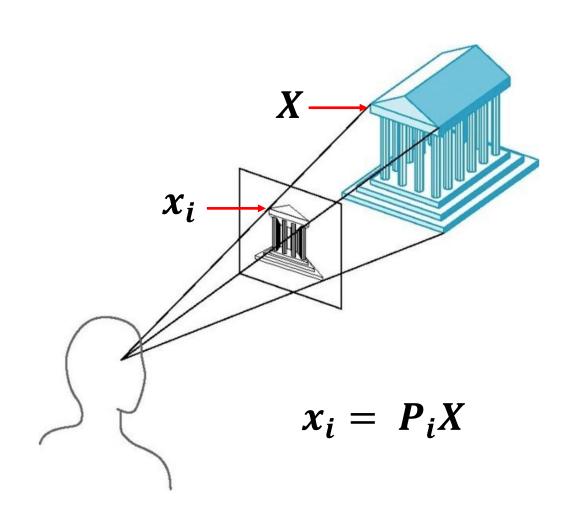
Backgrounds

How to solve?

- Find the X that satisfies the AX=0 equation
- X: 3D homogenous coordinate (4 x 1) X = (U, V, W, 1)
- A : coefficient matrix (2C x 4) The matrix A can be determined using the camera projection matrix P_i and the projected point x_i

$$\mathbf{A} = \begin{bmatrix} u_1 P_{1,3} - P_{1,1} \\ v_1 P_{1,3} - P_{1,2} \\ u_2 P_{2,3} - P_{2,1} \\ v_1 P_{2,3} - P_{2,2} \end{bmatrix}$$

 $P_{i,j}$ = the j-th row of the projection matrix P_i (3 x 4) x_i (u_i , v_i , 1) = 2d homogenous coordinate of X projected by P_i



Problem Statement

- When utilizing the multi-view to determine 3D human pose, heatmaps of poor quality due to occlusions or noise can influence the results

Key Idea

- To reflect the quality of each view, a learnable weight is added
- Estimate the 3d pose by applying learnable weights to both algebraic and volumetric triangulation

Single view 3D pose estimation

- A simple yet effective baseline for 3d human pose estimation(J.Martinez et al. 2017) proposed to lifting the 2D coordinates to 3D via deep neural networks.
- Integral human pose regression(X. Sun et al. 2018) proposed to infer the 3D coordinates directly from the images using convolutional neural networks.

Multi-view 3D pose estimation

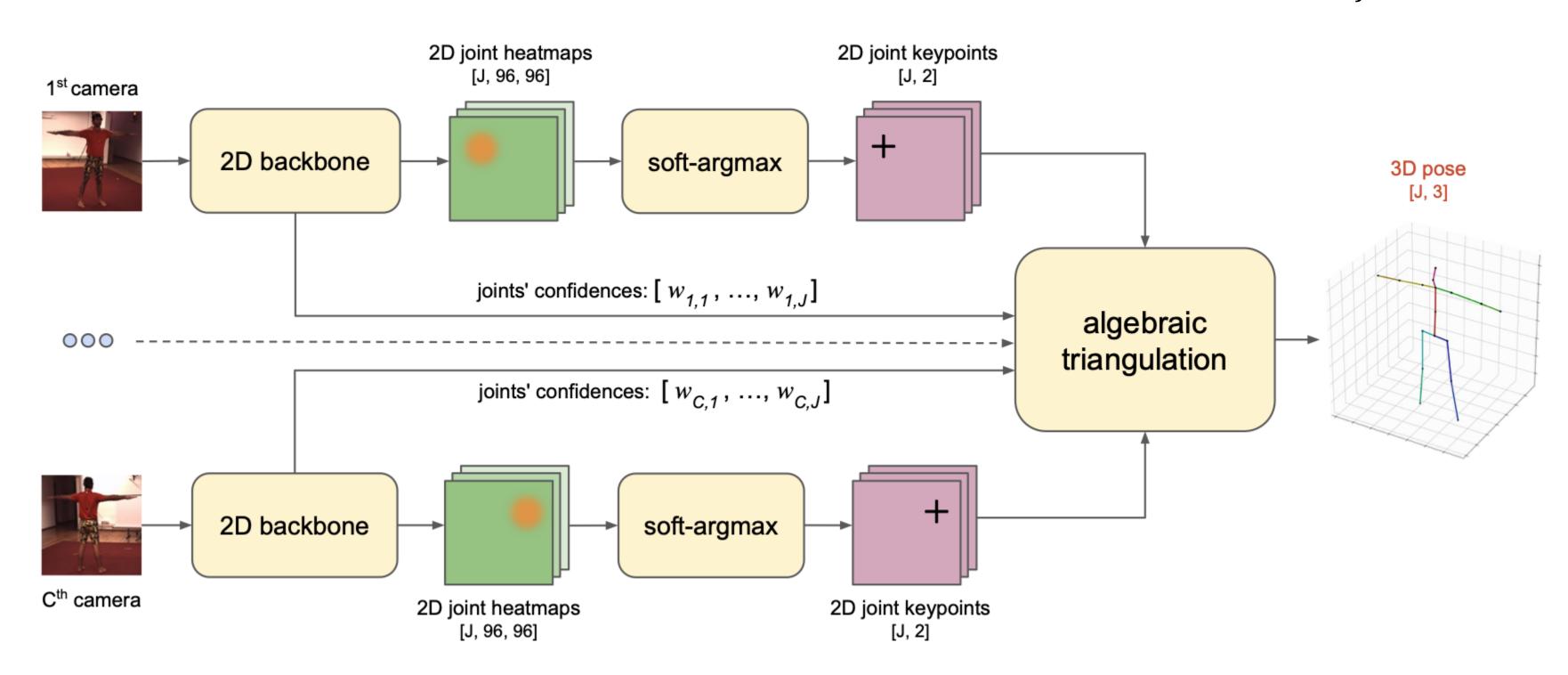
- A generalizable approach for multi-view 3D human pose regression
 (A. Kadkhodamohammadi and N. Padoy. 2018)
 proposed concatenating joints' 2D coordinates from all views into a single batch as an input to a fully connected network
- Panoptic studio: A massively multiview system for social interaction capture
 (H. Joo et al. 2015)
 utilized unprojection of 2D keypoint probability heatmaps to volume with subsequent non-learnable aggregation

Multiple view geometry

- Mutiple view geometry in computer vision(R. Hartley et al. 2003) described the geometric relationships in multiple view for computer vision

Algebraic Triangulation(baseline)

- Using synchronized video streams from C cameras with known projection matrices P_c
- For each timestamp, the frames are processed independently(not using temporal information)
- Process each joint independently of each other
- Using heatmaps to infer the 2D location of the joint
- Then proceeding with triangulation using camera parameters to find the 3D points $(A_i X = 0)$



Problem from determining 2d points

- The accuracy of the 2D extracting algorithm is high
- There are times when 2d points are not accurate in the event of occlusions
- Cannot assign the same weight and consider all views equally

RANSAC

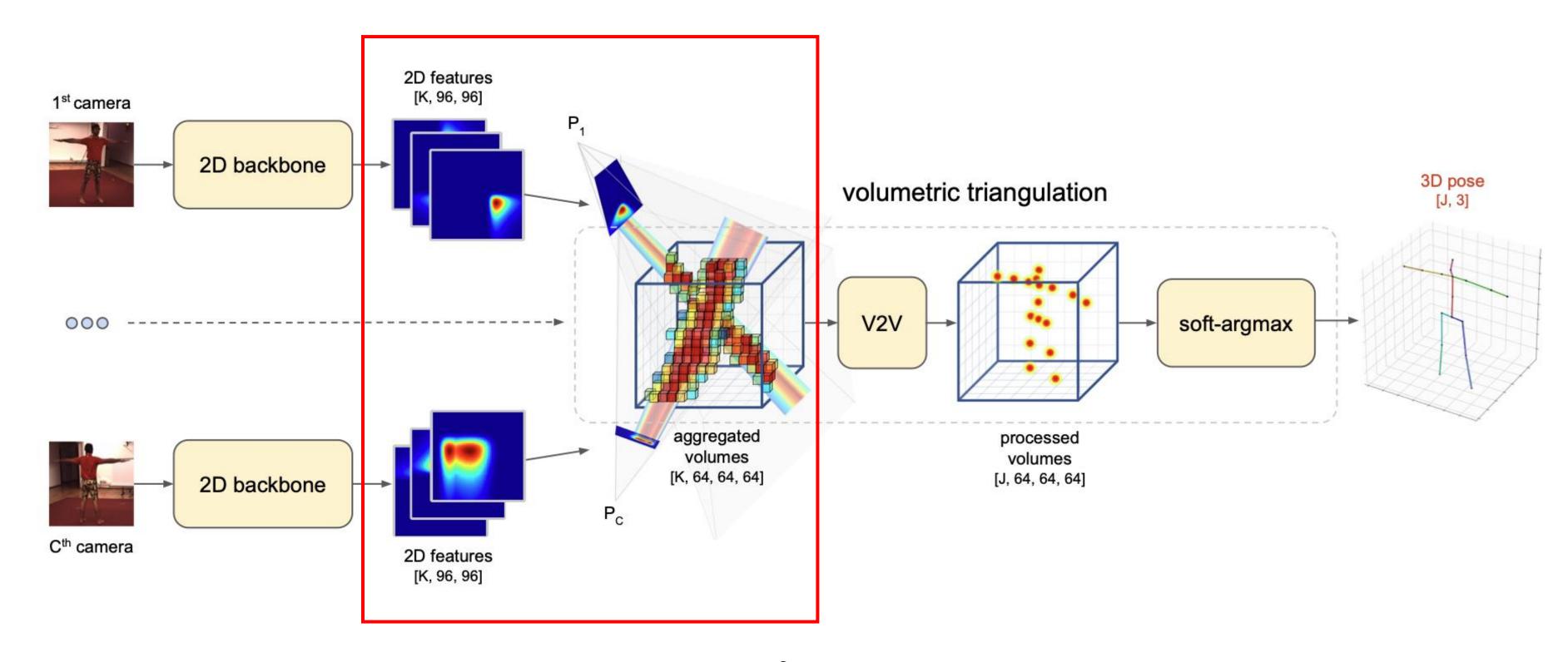
- RANdom SAmple Consensus
- Statistical method used for estimating models, especially in situations where there are outliers in the data
- If using RANSAC, there is a drawback that the model cannot learn from outlier cameras

Learnable camera-joint Confidence Weights

- Apply learnable weights w_c meaning contribution of camera c
- By using learnable weights, become more robust against joints that are incorrectly estimated due to noise or occlusions
- In scenes with sever occlusions, the heatmap is spread out evenly, so learnable weights w_c is measured to be small
- $w_j = (w_{1,j}, w_{1,j}, w_{2,j}, w_{2,j}, ..., w_{C,j}, w_{C,j})$
- $w_{i,i}$ means weight of the j-th joint captured by the i-th camera
- Solve the equation which satisfies $w_j \circ A_j X = 0$ (\circ means Hadamard product)

Volumetric Triangulation

- Unproject the feature maps produced by the 2D backbone into 3D volumes
- Filling a 3D cube around the person via projecting output of the 2D network along projection rays inside the 3D cube size LxLxL
- The cubes obtained from multiple views are then aggregated together and processed



- 3 methods for the aggregation
 - Raw summation of the voxel data:
 Simply add the heatmap values from all cubes

$$V_k^{ ext{input}} = \sum_c V_{c,k}^{ ext{view}}$$

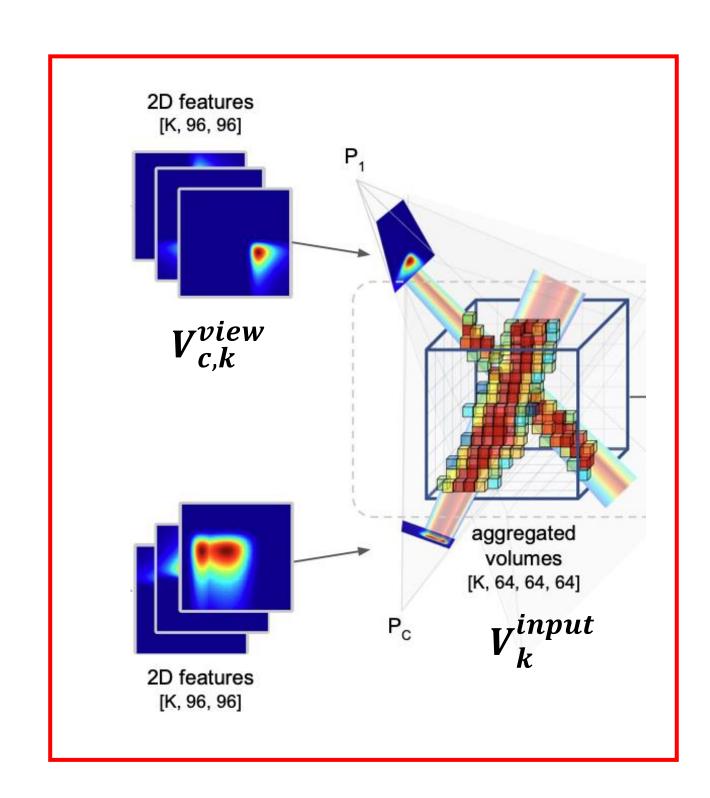
- Summation of the voxel data with normalized confidence multipliers d_c : Weighted sum of heatmap values using the learnable weight d_c

$$V_k^{ ext{input}} = \sum_c \left(d_c \cdot V_{c,k}^{ ext{view}}
ight) / \sum_c d_c$$

- Calculating a relaxed version of maximum: Weighted sum of heatmap values using the softmax function

$$V_{c,k}^w = \exp(V_{c,k}^{\mathrm{view}}) / \sum_c \exp(V_{c,k}^{\mathrm{view}})$$

$$V_k^{\text{input}} = \sum_c V_{c,k}^w \circ V_c^{\text{view}}$$



- Experiment Details
 - Used Human3.6M and CMU Panoptic datasets
 - The size of volumetric cube L: 2.5m
 - The number of output channels from the 2D backbone : K=32
 - 2D backbone: ResNet-152 network

Experimental Results

- Comparison between other algorithms and proposed methods with human 3.6m dataset
- Volumetric methods performs the best, providing about 30% reduction in the error to the RANSAC
- Used 4 cameras for this experiment

* MPJPE relative to pelvis :
Mean Per Joint Position Error from the pelvis(mm)

Protocol 1 (relative to pelvis)	Dir.	Disc.	Eat	Greet	Phone	Photo	Pose	Purch.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg
Multi-view methods (MPJPE relative to pelvis, mm)																
Multi-View Martinez [18]	46.5	48.6	54.0	51.5	67.5	70.7	48.5	49.1	69.8	79.4	57.8	53.1	56.7	42.2	45.4	57.0
Pavlakos <i>et al</i> . [12]	41.2	49.2	42.8	43.4	55.6	46.9	40.3	63.7	97.6	119.0	52.1	42.7	51.9	41.8	39.4	56.9
Tome <i>et al</i> . [18]	43.3	49.6	42.0	48.8	51.1	64.3	40.3	43.3	66.0	95.2	50.2	52.2	51.1	43.9	45.3	52.8
Kadkhodamohammadi & Padoy [6]	39.4	46.9	41.0	42.7	53.6	54.8	41.4	50.0	59.9	78.8	49.8	46.2	51.1	40.5	41.0	49.1
RANSAC (our implementation)	24.1	26.1	24.0	24.6	27.0	25.0	23.3	26.8	31.4	49.5	27.8	25.4	24.0	27.4	24.1	27.4
Ours, algebraic (w/o conf)	22.9	25.3	23.7	23.0	29.2	25.1	21.0	26.2	34.1	41.9	29.2	23.3	22.3	26.6	23.3	26.9
Ours, algebraic	20.4	22.6	20.5	19.7	22.1	20.6	19.5	23.0	25.8	33.0	23.0	21.6	20.7	23.7	21.3	22.6
Ours, volumetric (softmax aggregation)	18.8	20.0	19.3	18.7	20.2	19.3	18.7	22.3	23.3	29.1	21.2	20.3	19.3	21.6	19.8	20.8
Ours, volumetric (sum aggregation)	19.3	20.5	20.1	19.3	20.6	19.8	19.0	22.9	23.5	29.8	22.0	21.4	19.8	22.1	20.3	21.3
Ours, volumetric (conf aggregation)	19.9	20.0	18.9	18.5	20.5	19.4	18.4	22.1	22.5	28.7	21.2	20.8	19.7	22.1	20.2	20.8

Experimental Results

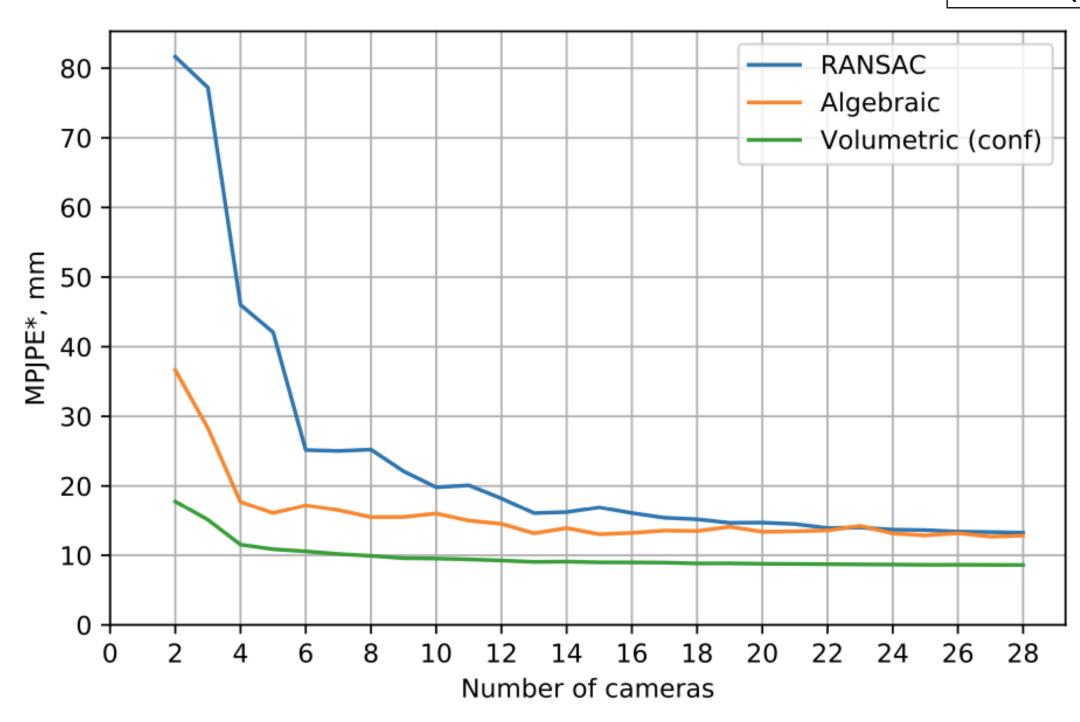
- Comparison between RANSAC method and proposed methods with CMU dataset
- Volumetric approach has a dramatic advantage over the algebraic one
- Used 4 cameras for this experiment

	* MPJPE(mm) : Mean Per Joint Position Erro
Model	MPJPE, mm
RANSAC	39.5
Ours, algebraic (w/o conf)	33.4
Ours, algebraic	21.3
Ours, volumetric (softmax aggregation)	13.7
Ours, volumetric (sum aggregation)	13.7
Ours, volumetric (conf aggregation)	14.0

Experimental Results

- Error versus the numbers of used cameras with CMU Panoptic dataset
- Volumetric triangulation methods drastically reduced the number of cameras in real-life setups
- The error of RANSAC approach with 28 cameras > The error of Volumetric approach with 4 cameras

* MPJPE(mm) : Mean Per Joint Position Error



Conclusion

Conclusion

- Applying the confidence weight of each feature maps, they achieved better 3D estimation results
- Using volumetric triangulation method, they reduced the number of views needed to achieve high accuracy
- The limitation of this algorithm is that it supports only a single person in the scene