A Reinforcement Learning Approach to Robust

Scheduling of Semiconductor Manufacturing Facilities

IB Park et al.

IEEE Transactions on Automation Science and Engineering(2021)

Speaker : Min Joon Kim
Jan 20th, 2022

.
Background

= Packaging process

« Packaging is the one of the semiconductor manufacturing process.
Bonding : Connecting eletrical signals
Molding : Protect the chips

(Source : SK hynics newroom)

* Many operations in the bonding process.(needed to be scheduled)
« Setup time will be needed.

« Limitation of computation time

Background

= Job shop scheduling

* Job shop scheduling problem is an optimization problem.

* In a general job scheduling problem, there are n jobs which need to be scheduled

on m machines while trying to minimize the makespan.

« Each job consists of a set of operations O,, O,, ..., O, which need to be processed

in a specific order.

v" (Objective) Minimizing makespan, tardiness, idle time, ...
v (Decision) 1) Determining which operation to process next
2) Determining which machine to assign

v (Constraints) 1) Each operation can only be processed on one machine at a time.

2) Each machine can only perform one operation at a time

Overview

» Reinforcement learning to solve Job-Shop Scheduling

« They want to solve the job shop scheduling problem with reinforcement learning.
« They applied Deep Q-Network to solve the problem.

« The performance was greater than metaheuristic and rule-based methods.

— B Minibatch

B
\

TT———— | transitions = __ Targ et —
Replay buffer Q-network
T — [] Loss values
(State, Action, chll"?‘md
Reward, Next state) weights v
Trainin . State 5 n Learnin
& » Simulator | Q-network |«) 1ng
problem / Action Updated weights algorithm
Training phase
Test phase ! Deployed model

hJ

Test . State Trained
Simulator |
problem Action Q-network

[Proposed framework]

Related works

Subject Author Paper
Shen Solving the flexible job shop scheduling problem with sequence-dependent
(2018) setup times
Meta- Chung Setup change scheduling for semiconductor packaging facilities using a
heuristic (2014) genetic algorithm with an operator recommender
Defersha A parallel genetic algorithm for a flexible job-shop scheduling problem with
(2010) sequence dependent setups
Jia A performance analysis of dispatch rules for semiconductor assembly & test
(2018) operations,’
Rule-based
Wang A lot dispatching strategy integrating WIP management and wafer start
(2007) control

» Metaheuristic method need a lot of computations to find a near-optimal schedule.

* Rule-based method cannot gurantee the high-quality solution.

Problem definition

= Scheduling problem for die attach and wire bonding stages

+ There are jobs that belong to one of N; job types.

* Jobs are processed by Ny machines of which the [th machine is denoted as M;.

+ Let P(J;) be the total number of jobs of J; to be scheduled, indicating the production requirement of J,

* Ajob of J; consists of N(J;) operations that need to be processed in the predetermined order, 0;,, ..., Ojn(-
+ The kth operation type of J; is represented as 0;. (the number of operation types Ny)

* (Setup time constraint) If an operation of 0,/ is assigned to the machine whose setup type is 0,

the operation of 0;/ s can be processed at the machine only after the setup change time, as o ;s

* The objective function is to minimize the makespan, C,,,, which is the completion time of the last finished

operation

Example

= Scheduling problem for die attach and wire bonding stages

Job Alternative Initial setup

types Operations machines status P(‘Lf)
O1,1 M O1,1
J1 O1 ,2 Mo - 1
O1,3 My, M2 O1,2
J2 O2.1 My - 1
Setup
M 0 0
! 11 change 21
M fdle 0,, Sewp | gk
2 ’ change
0 Ly t; t3 Iy Th;‘le

Fig. 3. Schedule obtained from the example. \
Minimize makespan

.
Methodology

= MDP(Markov Decision Process)

MDP is a tuple <S,4,P,R,y >, where ths state space S and action space A.

The transition probability P:SxAxS — [0, 1] represents the probability of the next
state given the current state and action.

The reward function R: SXAxS - [I'min, 'max]

Discount factor y — [0, 1]

RL considers a sequential decision making problem as MDP and solve the Bellman
equation by iterative learning.

So, the objective of RL agent is to learn a policy that maximizes the expected

cumulative sum of rewards.

Methodology
GO & Environment
Reward r,
-
State sy,4
-«

Learning through trial and error!

+ AlphaGo * Scheduling
State : Board, score State : Production environment
Action : Drop the stone Action : Assign the operation to the machine
Reward : win(+) / lose(-) Reward : -(Makespan)

I] |
]
[|

L
State, Action, Reward

= State -

Action
Features Descriptions Dimension « Assigning an operation(Dimension N, + 1)
The number of waiting
Wailing operations operations of O; , which can No v Including do-nothing action as §,
be processed by the machine
) . Setup type of the machine :
Setup status represented as one-hot encoding No
" .) The number of performed AT
Action history actions on the machine No +1 S
ctup
. . Ml 011 021
I'he amounts of processing, ' change ’
Utilization history setup, and idle time of the 3 | |
machine
M, fdle 01, cieafpe 0,5 |ldie
= Reward 0 t; t sty Time
—(z(Si+1) — 7(85i) — pjk), ai = Ojk (Caculation example)
- .
—(7(si+1) — 7(s7)), a; = op. Machinel (a, = 0,4) : —(t4 —tl —p, 1)
Indicating setup or idle time
Y) Maximize sum of all rewards(R)
R:_ N,MCl]lax_ZijakXP(.}j)
s IS equivalent to minimize Cypqy

R
Q-Network

= State-action value(Q) function approximation

Q(s,a) =r(s,a) + "y max Q(s',a) (Bellman equation)

« Q value is the cumulative reward when we are at state s and do action a

* In dynamic programming, we can get the optimal policy through Q-value table.

Game Board: Q Table: y=0.95
D action| 100 | 010 | 001 | 000 | o000 | ooo |~ state

= ‘ ﬁ 02 | 03 | 1.0 |-022| -0.3 | 0.0

Current state (s): 0 90 05 | -04 | -02 |-0.04 |-002| 0.0

) | 0.21 0.4 -0.3 0.5 1.0 0.0
=

-06 | -0.1 -0.1 | -0.31 | -0.01 | 0.0

« However, if the dimension of state and action is large, the curse of dimensionality problem occurs.

Q-Network

= State-action value(Q) function approximation

» To overcome curse of dimensionality, we can use neural network to approximate the Q-value

w Q(s, a,w)

S
a

g —greedy exploration

= g-greedy policy

« Simplest idea for ensuring continual exploration
« All m actions are tried with non-zero probability
« With probability 1-¢ choose the greedy action(choose the best action, exploitation)

» With probability ¢ choose an action at random(exploration)

e/m+1—e€ if a3 =argmax Q(s, a)
m(als) = acA
e/m otherwise

-
DQN

= Experience replay and fixed Q-targets

« To overcome correlations between samples, experience replay was suggested.

» For learning stability, seperate two Q-Network idea was suggested.(fixed Q-targets)

v’ Take action a; according to e-greedy policy

v' Store transition (s¢, a¢, 1t41,S¢+1) In replay memory D

v" Sample random mini-batch of transitions (s, a, r, s") from D
v' Compute Q-learning targets old, fixed parameters w~

v' Optimize MSE(Mean Squared Error) between Q-network and Q-learning targets

2
Li(wj) =Es,, oD (r + 7 max Q(S" a: Wf_) — Q(s, a; w;))

l

fixed target network

-
DQN

= Loss function

* They applied Huber loss instead of MSE error.

* (Huber Loss) Quadratic for small difference and linear for large difference.

Q (Su> Ay 0) A A
ru+ 7 LE(Sut1) max Q(sut1,a’; 0)

a

Yu
Vu

where [(vu, gy) 18 the loss function given by

l B S\ ,-

H(.‘r"u - qu)zn if |Yu —qu| <1 AN /o
fOu,qu) =4 -] NG _._. /‘

[Yu — qul — 5, otherwise. 1NN

'-"\-\. -I,"l'- -
" ;
1 . 4/’.-
- =1 -3 -1 a 1 El

Blue : MSE loss
Green : Huber loss

Experiments

= Comparing with other methods

* Proposed method was outperformed the other methods in every given dataset.

[ors
[/ GA
[liule [Hest)

5}

G0

Makespan

1ol il]

Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 7 Dataset 8 Dataset 9 Dataset 10 Dataset 12 Dataset 13 Dataset 14 Dataszet 15

*Rule based
shortest setup time (SSU), shortest sum of processing time and setup time (SPTSSU)
most operation remaining (MOR), most work remaining (MWR), shortest processing time (SPT)

Experiments

= Sensitivity analysis

To investigate the sensitivity of hyperparameters, they compared the makespan for each result.

— (a) Network structure(Q-network)
Y (b) Epsilon(e-greedy policy)

(c) Learning rate

(d) Replay buffer size(experience replay)

Makespan
Makespan

0 500 1000 1500 2000 2500 3000 3500 4000 0 a00 1000 1500 2000 2500 3000 3500 4000
The cumulative number of episodes The cumulative number of episodes
{a) (b)
. — 0.00002 — 10
a0 - J
f0 -3 10,0001 &0 -3 10°
—-— 00002 e f h. |
—— . —-— 10
_ N (@) 64, 32, 16, 8 nodes for hidden layers

(b) epsilon = 0.1

=
=

Za Jo (c) 0.0002

(d) 105

o 5000 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4I50U
The cumulative number of episodes The cumulative number of episodes

(c) (d)

Experiments

= Computation time

» Compared to GA(Genetic Algorithm), the computation time was decreased.(about 100 times)

« The computation time of proposed method was less than 120s.

D?&fel Best Rule Ours GA
2 6.84 17.75 1705.75
3 13.48 35.12 3881.79
4 22.20 59.20 5561.81
5 33.31 88.08 8938.19
7 7.78 19.84 1734.74
8 15.22 39.76 3968.45
9 25.15 69.36 5702.72
10 37.779 100.04 8991.76
12 8.19 19.66 1765.32
13 16.20 38.67 4070.17
14 26.19 65.46 5919.82
15 39.47 98.85 9015.66

Conclusion

= Conclusion

« They proposed reinforcement learning approach to scheduling of semiconductor

manufacturing

« The performance was greater than metaheuristic and rule-based method.

= Contribution

« Machine setup status was considered in this paper.

» Applying reinforcement learning in semiconductor manufacturing scheduling.

= Evaluation

» The overall structure of this paper was great and | thought the comparing with

the optimal scheduling should be needed.

