A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing Facilities

IB Park et al.

IEEE Transactions on Automation Science and Engineering(2021)

Speaker: Min Joon Kim

Jan 20th, 2022

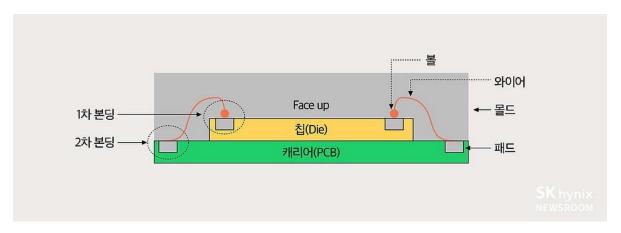
Background

Packaging process

Packaging is the one of the semiconductor manufacturing process.

Bonding: Connecting eletrical signals

Molding: Protect the chips



(Source : SK hynics newroom)

- Many operations in the bonding process.(needed to be scheduled)
- Setup time will be needed.
- Limitation of computation time

Background

Job shop scheduling

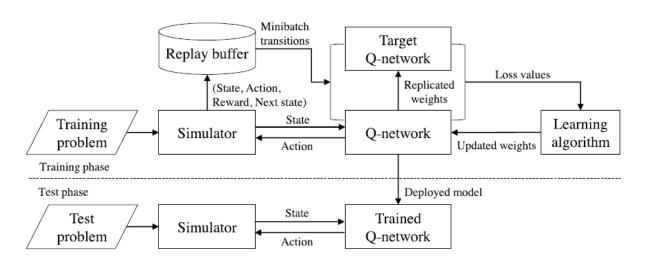
- Job shop scheduling problem is an optimization problem.
- In a general job scheduling problem, there are n jobs which need to be scheduled on m machines while trying to minimize the makespan.
- Each job consists of a set of **operations** O_1 , O_2 , ..., O_n which need to be processed in a specific order.
 - ✓ (Objective) Minimizing makespan, tardiness, idle time, ...
- ✓ (Decision) 1) Determining which operation to process next
 - 2) Determining which machine to assign
- ✓ (Constraints) 1) Each operation can only be processed on one machine at a time.
 - 2) Each machine can only perform one operation at a time

:

Overview

Reinforcement learning to solve Job-Shop Scheduling

- They want to solve the job shop scheduling problem with reinforcement learning.
- They applied Deep Q-Network to solve the problem.
- The performance was greater than metaheuristic and rule-based methods.



[Proposed framework]

Related works

Subject	Author	Paper		
	Shen (2018)	Solving the flexible job shop scheduling problem with sequence-dependent setup times		
Meta- heuristic	Chung (2014)	Setup change scheduling for semiconductor packaging facilities using a genetic algorithm with an operator recommender		
	Defersha (2010)	A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups		
	Jia (2018)	A performance analysis of dispatch rules for semiconductor assembly & test operations,"		
Rule-based	Wang (2007)	A lot dispatching strategy integrating WIP management and wafer start control		

- Metaheuristic method need a lot of computations to find a near-optimal schedule.
- Rule-based method cannot gurantee the high-quality solution.

Problem definition

Scheduling problem for die attach and wire bonding stages

- There are jobs that belong to one of N_I job types.
- Jobs are processed by N_M machines of which the l th machine is denoted as M_l .
- Let $P(J_I)$ be the total number of jobs of J_I to be scheduled, indicating the production requirement of J_I
- A job of J_J consists of $N(J_J)$ operations that need to be processed in the predetermined order, $O_{j,1}, \ldots, O_{j,N(J_I)}$.
- The kth operation type of J_I is represented as $O_{i,k}$. (the number of operation types N_O)
- (Setup time constraint) If an operation of $O_{j',k'}$ is assigned to the machine whose setup type is $O_{j,k'}$ the operation of $O_{j',k'}$ can be processed at the machine only after the setup change time, as $\sigma_{j,k,j',k'}$
- The objective function is to minimize the makespan, C_{max} which is the completion time of the last finished operation

Example

Scheduling problem for die attach and wire bonding stages

Job types	Operations	Alternative machines	Initial setup status	$P(J_j)$
	$O_{1,1}$	M_1	$O_{1,1}$	
J_1	$O_{1,2}$	M_2	-	1
	$O_{1,3}$	M_1, M_2	$O_{1,2}$	
J_2	$O_{2,1}$	M_1	-	1

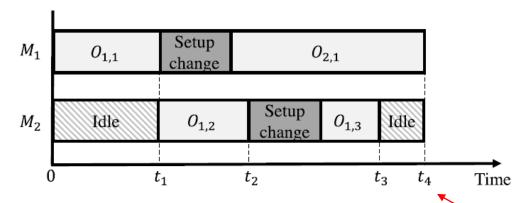


Fig. 3. Schedule obtained from the example.

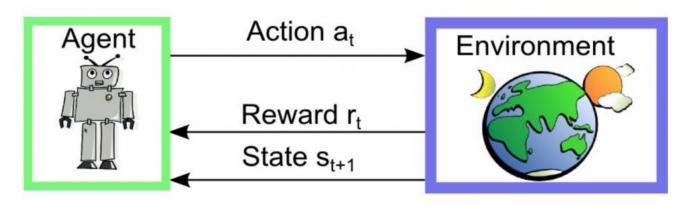
Minimize makespan

Methodology

MDP(Markov Decision Process)

- MDP is a tuple $\langle S, A, P, R, \gamma \rangle$, where the state space S and action space A.
- The **transition probability** $P: SxAxS \rightarrow [0,1]$ represents the probability of the next state given the current state and action.
- The **reward function** $R: SxAxS \rightarrow [r_{min}, r_{max}]$
- Discount factor $\gamma \rightarrow [0, 1]$
- RL considers a sequential decision making problem as MDP and solve the Bellman equation by iterative learning.
- So, the objective of RL agent is to learn a policy that maximizes the expected cumulative sum of rewards.

Methodology



Learning through trial and error!

AlphaGo

State : Board, score

Action: Drop the stone

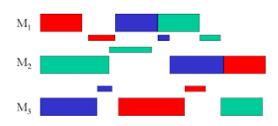
Reward: win(+) / lose(-)

Scheduling

State: Production environment

Action: Assign the operation to the machine

Reward : -(Makespan)



State, Action, Reward

State

Features	Descriptions	Dimension
Waiting operations	The number of waiting operations of $O_{j,k}$ which can be processed by the machine	N_O
Setup status Setup type of the machine represented as one-hot encoding		N_O
Action history	on history The number of performed actions on the machine	
Utilization history	The amounts of processing, setup, and idle time of the machine	3

Reward

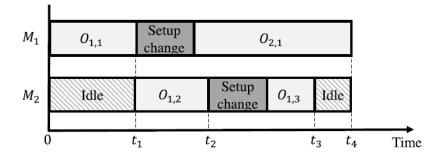
$$r_i = \begin{cases} -(\tau(s_{i+1}) - \tau(s_i) - p_{j,k}), & a_i = O_{j,k} \\ -(\tau(s_{i+1}) - \tau(s_i)), & a_i = \delta_0. \end{cases}$$

Indicating setup or idle time

$$R = -\left(N_M C_{\max} - \sum_{j=1}^{N_J} \sum_{k=1}^{N(J_j)} p_{j,k} \times P(J_j)\right)$$
 Maximize sum of all rewards(R) is equivalent to minimize C_{\max}

Action

- Assigning an operation(Dimension $N_0 + 1$)
 - Including do-nothing action as δ_0



(Caculation example)

Machine1
$$(a_2 = O_{2,1})$$
: $-(t4 - t1 - p_{2,1})$

Q-Network

State-action value(Q) function approximation

$$Q(s,a) = r(s,a) + \gamma \max_a Q(s',a)$$
 (Bellman equation)

- Q value is the cumulative reward when we are at state s and do action a
- In dynamic programming, we can get the optimal policy through Q-value table.

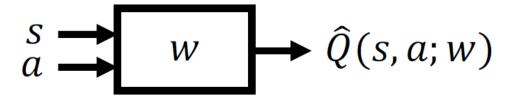
Q Table	:					γ = 0.95	7
action	0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	100	0 1 0 0 0 0	0 0 1 0 0 0	state
Î	0.2	0.3	1.0	-0.22	-0.3	0.0	
Ţ	-0.5	-0.4	-0.2	-0.04	-0.02	0.0	
\Rightarrow	0.21	0.4	-0.3	0.5	1.0	0.0	
	-0.6	-0.1	-0.1	-0.31	-0.01	0.0	

However, if the dimension of state and action is large, the curse of dimensionality problem occurs.

Q-Network

State-action value(Q) function approximation

To overcome curse of dimensionality, we can use neural network to approximate the Q-value



ε –greedy exploration

• ε -greedy policy

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1- ε choose the greedy action(choose the best action, exploitation)
- With probability ε choose an action at random(exploration)

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & a \in \mathcal{A} \ \end{array}
ight. \ ext{otherwise}$$

DQN

Experience replay and fixed Q-targets

- To overcome correlations between samples, experience replay was suggested.
- For learning stability, seperate two Q-Network idea was suggested.(fixed Q-targets)
 - \checkmark Take action a_t according to ε-greedy policy
 - ✓ Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
 - ✓ Sample random mini-batch of transitions (s, a, r, s') from D
 - ✓ Compute Q-learning targets old, fixed parameters w^-
 - ✓ Optimize MSE(Mean Squared Error) between Q-network and Q-learning targets

$$\mathcal{L}_{i}(w_{i}) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_{i}} \left[\left(r + \gamma \max_{a'} Q(s',a';w_{i}^{-}) - Q(s,a;w_{i}) \right)^{2} \right]$$
fixed target network

DQN

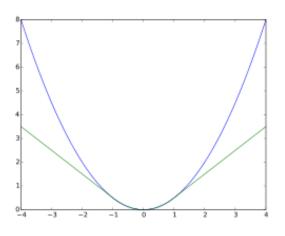
Loss function

- They applied Huber loss instead of MSE error.
- (Huber Loss) Quadratic for small difference and linear for large difference.

$$q_{u} = Q(s_{u}, a_{u}; \theta) y_{u} = r_{u} + \gamma \mathbb{1}_{F}(s_{u+1}) \max_{a'} \hat{Q}(s_{u+1}, a'; \hat{\theta})$$

where $f(y_u, q_u)$ is the loss function given by

$$f(y_u, q_u) = \begin{cases} \frac{1}{2} (y_u - q_u)^2, & \text{if } |y_u - q_u| < 1\\ |y_u - q_u| - \frac{1}{2}, & \text{otherwise.} \end{cases}$$

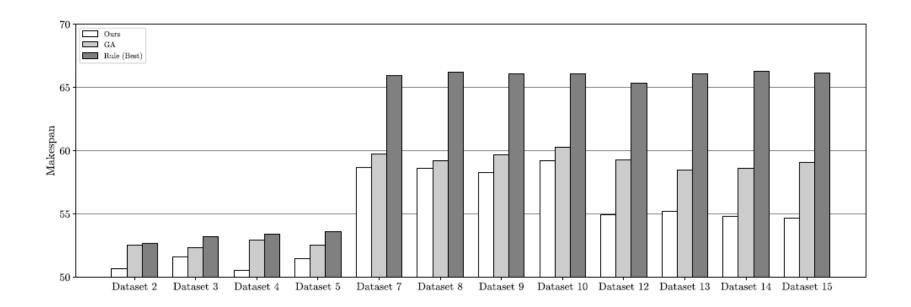


Blue : MSE loss Green : Huber loss

Experiments

Comparing with other methods

Proposed method was outperformed the other methods in every given dataset.

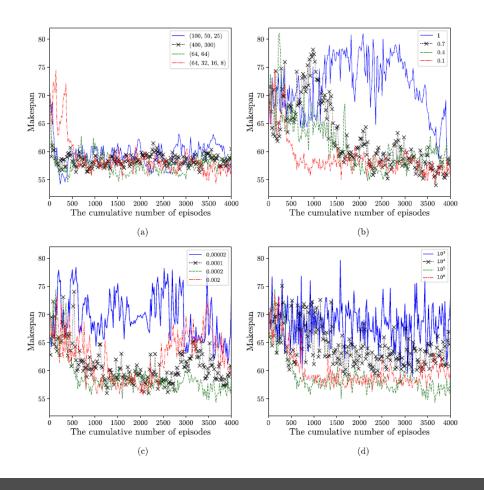


*Rule based shortest setup time (SSU), shortest sum of processing time and setup time (SPTSSU) most operation remaining (MOR), most work remaining (MWR), shortest processing time (SPT)

Experiments

Sensitivity analysis

To investigate the sensitivity of hyperparameters, they compared the makespan for each result.



- (a) Network structure(Q-network)
- (b) Epsilon(ε -greedy policy)
- (c) Learning rate
- (d) Replay buffer size(experience replay)

- (a) 64, 32, 16, 8 nodes for hidden layers
- (b) epsilon = 0.1
- (c) 0.0002
- (d) 10^5

Experiments

Computation time

- Compared to GA(Genetic Algorithm), the computation time was decreased.(about 100 times)
- The computation time of proposed method was less than 120s.

Dataset No.	Best Rule	Ours	GA
2	6.84	17.75	1705.75
3	13.48	35.12	3881.79
4	22.20	59.20	5561.81
5	33.31	88.08	8938.19
7	7.78	19.84	1734.74
8	15.22	39.76	3968.45
9	25.15	69.36	5702.72
10	37.779	100.04	8991.76
12	8.19	19.66	1765.32
13	16.20	38.67	4070.17
14	26.19	65.46	5919.82
15	39.47	98.85	9015.66

Conclusion

Conclusion

- They proposed reinforcement learning approach to scheduling of semiconductor manufacturing
- The performance was greater than metaheuristic and rule-based method.

Contribution

- Machine setup status was considered in this paper.
- Applying reinforcement learning in semiconductor manufacturing scheduling.

Evaluation

 The overall structure of this paper was great and I thought the comparing with the optimal scheduling should be needed.